Spaces:
Runtime error
Runtime error
File size: 50,449 Bytes
32f0b26 b77ac12 32f0b26 b04690b 32f0b26 b04690b 32f0b26 b04690b 32f0b26 b04690b 32f0b26 b04690b 32f0b26 b04690b 32f0b26 b04690b 4adf2d3 32f0b26 b04690b 32f0b26 4adf2d3 c55019b 4adf2d3 c55019b 4adf2d3 32f0b26 b04690b c55019b b04690b 4adf2d3 b04690b 32f0b26 4adf2d3 c55019b 4adf2d3 b04690b 32f0b26 4adf2d3 b04690b 4adf2d3 c55019b 32f0b26 b04690b 32f0b26 b04690b 32f0b26 b04690b 32f0b26 b77ac12 1882b75 b77ac12 1882b75 b77ac12 1882b75 b77ac12 1882b75 b77ac12 1882b75 b77ac12 32f0b26 4adf2d3 32f0b26 4adf2d3 32f0b26 4adf2d3 32f0b26 b04690b 32f0b26 4adf2d3 32f0b26 b04690b 4adf2d3 32f0b26 c55019b 32f0b26 b04690b 32f0b26 4adf2d3 32f0b26 4adf2d3 32f0b26 c55019b 32f0b26 b04690b 32f0b26 4adf2d3 32f0b26 b04690b c55019b b04690b 4adf2d3 b04690b c55019b b04690b 4adf2d3 32f0b26 c55019b 32f0b26 c55019b 32f0b26 c55019b 32f0b26 b04690b 32f0b26 b04690b 32f0b26 c55019b 32f0b26 b04690b 32f0b26 da6aa93 37d1f1c 32f0b26 37d1f1c 32f0b26 37d1f1c 32f0b26 b04690b 32f0b26 b04690b 32f0b26 da6aa93 32f0b26 da6aa93 32f0b26 da6aa93 37d1f1c 32f0b26 37d1f1c 32f0b26 4adf2d3 32f0b26 4adf2d3 32f0b26 c55019b 32f0b26 b04690b 32f0b26 c55019b 32f0b26 c55019b 32f0b26 c55019b 32f0b26 c55019b 32f0b26 c55019b 32f0b26 b04690b 32f0b26 b04690b 32f0b26 b04690b 32f0b26 da6aa93 b04690b 32f0b26 b04690b 32f0b26 c55019b b04690b 32f0b26 b04690b 32f0b26 70ab0be 32f0b26 b04690b 32f0b26 b04690b 32f0b26 da6aa93 c55019b 32f0b26 b04690b c55019b b04690b 32f0b26 b04690b 32f0b26 b04690b 32f0b26 da6aa93 c55019b b04690b 32f0b26 c55019b b04690b 32f0b26 b04690b 32f0b26 b04690b 32f0b26 b04690b 32f0b26 37d1f1c 32f0b26 b04690b 32f0b26 37d1f1c b04690b 32f0b26 b04690b 32f0b26 b04690b 32f0b26 b04690b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 |
"""
UTILS FILE
"""
import random
import json
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import pickle
import os
import mne
from surprise import Dataset, Reader, SVD, accuracy, KNNBasic, KNNWithMeans, KNNWithZScore
from surprise.model_selection import train_test_split
from sklearn.utils import resample
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
from scipy import stats
import math
import altair as alt
import matplotlib.pyplot as plt
import time
from sentence_transformers import SentenceTransformer, util
import torch
from bertopic import BERTopic
from datetime import date
########################################
# PRE-LOADING
YOUR_COLOR = '#6CADFD'
OTHER_USERS_COLOR = '#ccc'
BINS = [0, 0.5, 1.5, 2.5, 3.5, 4]
BIN_LABELS = ['0: Not at all toxic', '1: Slightly toxic', '2: Moderately toxic', '3: Very toxic', '4: Extremely toxic']
TOXIC_THRESHOLD = 2.0
alt.renderers.enable('altair_saver', fmts=['vega-lite', 'png'])
# Data-loading
module_dir = "./"
with open(os.path.join(module_dir, "data/input/ids_to_comments.pkl"), "rb") as f:
ids_to_comments = pickle.load(f)
with open(os.path.join(module_dir, "data/input/comments_to_ids.pkl"), "rb") as f:
comments_to_ids = pickle.load(f)
system_preds_df = pd.read_pickle("data/input/system_preds_df.pkl")
sys_eval_df = pd.read_pickle(os.path.join(module_dir, "data/input/split_data/sys_eval_df.pkl"))
train_df = pd.read_pickle(os.path.join(module_dir, "data/input/split_data/train_df.pkl"))
train_df_ids = train_df["item_id"].unique().tolist()
model_eval_df = pd.read_pickle(os.path.join(module_dir, "data/input/split_data/model_eval_df.pkl"))
ratings_df_full = pd.read_pickle(os.path.join(module_dir, "data/input/ratings_df_full.pkl"))
worker_info_df = pd.read_pickle("./data/input/worker_info_df.pkl")
topic_ids = system_preds_df.topic_id
topics = system_preds_df.topic
topic_ids_to_topics = {topic_ids[i]: topics[i] for i in range(len(topic_ids))}
topics_to_topic_ids = {topics[i]: topic_ids[i] for i in range(len(topic_ids))}
unique_topics_ids = sorted(system_preds_df.topic_id.unique())
unique_topics = [topic_ids_to_topics[topic_id] for topic_id in range(len(topic_ids_to_topics) - 1)]
def get_toxic_threshold():
return TOXIC_THRESHOLD
def get_user_model_names(user):
# Fetch the user's models
output_dir = f"./data/output"
users = [name for name in os.listdir(output_dir) if os.path.isdir(os.path.join(output_dir, name))]
if user not in users:
# User does not exist
return []
else:
# Fetch trained model names for the user
user_dir = f"./data/output/{user}"
user_models = [name for name in os.listdir(user_dir) if os.path.isdir(os.path.join(user_dir, name))]
user_models.sort()
return user_models
def get_unique_topics():
return unique_topics
def get_large_clusters(min_n):
counts_df = system_preds_df.groupby(by=["topic_id"]).size().reset_index(name='counts')
counts_df = counts_df[counts_df["counts"] >= min_n]
return [topic_ids_to_topics[t_id] for t_id in sorted(counts_df["topic_id"].tolist()[1:])]
def get_ids_to_comments():
return ids_to_comments
def get_workers_in_group(sel_gender, sel_race, sel_relig, sel_pol, sel_lgbtq):
df = worker_info_df.copy()
if sel_gender != "null":
df = df[df["gender"] == sel_gender]
if sel_relig != "null":
df = df[df["religion_important"] == sel_relig]
if sel_pol != "null":
df = df[df["political_affilation"] == sel_pol]
if sel_lgbtq != "null":
if sel_lgbtq == "LGBTQ+":
df = df[(df["lgbtq_status"] == "Homosexual") | (df["lgbtq_status"] == "Bisexual")]
else:
df = df[df["lgbtq_status"] == "Heterosexual"]
if sel_race != "":
df = df.dropna(subset=['race'])
for r in sel_race:
# Filter to rows with the indicated race
df = df[df["race"].str.contains(r)]
return df, len(df)
readable_to_internal = {
"Mean Absolute Error (MAE)": "MAE",
"Root Mean Squared Error (RMSE)": "RMSE",
"Mean Squared Error (MSE)": "MSE",
"Average rating difference": "avg_diff",
"Topic": "topic",
"Toxicity Category": "toxicity_category",
"Toxicity Severity": "toxicity_severity",
}
internal_to_readable = {v: k for k, v in readable_to_internal.items()}
########################################
# Data storage helper functions
# Set up all directories for new user
def setup_user_dirs(cur_user):
user_dir = f"./data/output/{cur_user}"
if not os.path.isdir(user_dir):
os.mkdir(user_dir)
def setup_model_dirs(cur_user, cur_model):
model_dir = f"./data/output/{cur_user}/{cur_model}"
if not os.path.isdir(model_dir):
os.mkdir(model_dir) # Set up model dir
# Set up subdirs
os.mkdir(os.path.join(model_dir, "labels"))
os.mkdir(os.path.join(model_dir, "perf"))
def setup_user_model_dirs(cur_user, cur_model):
setup_user_dirs(cur_user)
setup_model_dirs(cur_user, cur_model)
# Charts
def get_chart_file(cur_user, cur_model):
chart_dir = f"./data/output/{cur_user}/{cur_model}"
return os.path.join(chart_dir, f"chart_overall_vis.json")
# Labels
def get_label_dir(cur_user, cur_model):
return f"./data/output/{cur_user}/{cur_model}/labels"
def get_n_label_files(cur_user, cur_model):
label_dir = get_label_dir(cur_user, cur_model)
return len([name for name in os.listdir(label_dir) if os.path.isfile(os.path.join(label_dir, name))])
def get_label_file(cur_user, cur_model, label_i=None):
if label_i is None:
# Get index to add on to end of list
label_i = get_n_label_files(cur_user, cur_model)
label_dir = get_label_dir(cur_user, cur_model)
return os.path.join(label_dir, f"{label_i}.pkl")
# Performance
def get_perf_dir(cur_user, cur_model):
return f"./data/output/{cur_user}/{cur_model}/perf"
def get_n_perf_files(cur_user, cur_model):
perf_dir = get_perf_dir(cur_user, cur_model)
return len([name for name in os.listdir(perf_dir) if os.path.isfile(os.path.join(perf_dir, name))])
def get_perf_file(cur_user, cur_model, perf_i=None):
if perf_i is None:
# Get index to add on to end of list
perf_i = get_n_perf_files(cur_user, cur_model)
perf_dir = get_perf_dir(cur_user, cur_model)
return os.path.join(perf_dir, f"{perf_i}.pkl")
# Predictions dataframe
def get_preds_file(cur_user, cur_model):
preds_dir = f"./data/output/{cur_user}/{cur_model}"
return os.path.join(preds_dir, f"preds_df.pkl")
# Reports
def get_reports_file(cur_user, cur_model):
return f"./data/output/{cur_user}/{cur_model}/reports.json"
########################################
# General utils
def get_metric_ind(metric):
if metric == "MAE":
ind = 0
elif metric == "MSE":
ind = 1
elif metric == "RMSE":
ind = 2
elif metric == "avg_diff":
ind = 3
return ind
def my_bootstrap(vals, n_boot, alpha):
bs_samples = []
sample_size = len(vals)
for i in range(n_boot):
samp = resample(vals, n_samples=sample_size)
bs_samples.append(np.median(samp))
p = ((1.0 - alpha) / 2.0) * 100
ci_low = np.percentile(bs_samples, p)
p = (alpha + ((1.0 - alpha) / 2.0)) * 100
ci_high = np.percentile(bs_samples, p)
return bs_samples, (ci_low, ci_high)
########################################
# GET_AUDIT utils
def plot_metric_histogram(metric, user_metric, other_metric_vals, n_bins=10):
hist, bin_edges = np.histogram(other_metric_vals, bins=n_bins, density=False)
data = pd.DataFrame({
"bin_min": bin_edges[:-1],
"bin_max": bin_edges[1:],
"bin_count": hist,
"user_metric": [user_metric for i in range(len(hist))]
})
base = alt.Chart(data)
bar = base.mark_bar(color=OTHER_USERS_COLOR).encode(
x=alt.X("bin_min", bin="binned", title=internal_to_readable[metric]),
x2='bin_max',
y=alt.Y("bin_count", title="Number of users"),
tooltip=[
alt.Tooltip('bin_min', title=f'{metric} bin min', format=".2f"),
alt.Tooltip('bin_max', title=f'{metric} bin max', format=".2f"),
alt.Tooltip('bin_count', title=f'Number of OTHER users', format=","),
]
)
rule = base.mark_rule(color=YOUR_COLOR).encode(
x = "mean(user_metric):Q",
size=alt.value(2),
tooltip=[
alt.Tooltip('mean(user_metric)', title=f'{metric} with YOUR labels', format=".2f"),
]
)
return (bar + rule).interactive()
# Generates the summary plot across all topics for the user
def show_overall_perf(cur_model, error_type, cur_user, threshold=TOXIC_THRESHOLD, topic_vis_method="median", use_cache=True):
# Your perf (calculate using model and testset)
preds_file = get_preds_file(cur_user, cur_model)
with open(preds_file, "rb") as f:
preds_df = pickle.load(f)
chart_file = get_chart_file(cur_user, cur_model)
if use_cache and os.path.isfile(chart_file):
# Read from file if it exists
with open(chart_file, "r") as f:
topic_overview_plot_json = json.load(f)
else:
# Otherwise, generate chart and save to file
if topic_vis_method == "median": # Default
preds_df_grp = preds_df.groupby(["topic", "user_id"]).median()
elif topic_vis_method == "mean":
preds_df_grp = preds_df.groupby(["topic", "user_id"]).mean()
topic_overview_plot_json = plot_overall_vis(preds_df=preds_df_grp, n_topics=200, threshold=threshold, error_type=error_type, cur_user=cur_user, cur_model=cur_model)
# Save to file
with open(chart_file, "w") as f:
json.dump(topic_overview_plot_json, f)
return {
"topic_overview_plot_json": json.loads(topic_overview_plot_json),
}
########################################
# GET_LABELING utils
def create_example_sets(n_label_per_bin, score_bins, keyword=None, topic=None):
# Restrict to the keyword, if provided
df = system_preds_df.copy()
if keyword != None:
df = df[df["comment"].str.contains(keyword)]
if topic != None:
df = df[df["topic"] == topic]
# Try to choose n values from each provided score bin
ex_to_label = []
bin_names = []
bin_label_counts = []
for i, score_bin in enumerate(score_bins):
min_score, max_score = score_bin
cur_df = df[(df["rating"] >= min_score) & (df["rating"] < max_score) & (df["item_id"].isin(train_df_ids))]
# sample rows for label
comment_ids = cur_df.item_id.tolist()
cur_n_label_per_bin = n_label_per_bin[i]
cap = min(len(comment_ids), (cur_n_label_per_bin))
to_label = np.random.choice(comment_ids, cap, replace=False)
ex_to_label.extend(to_label)
bin_names.append(f"[{min_score}, {max_score})")
bin_label_counts.append(len(to_label))
return ex_to_label
def get_grp_model_labels(n_label_per_bin, score_bins, grp_ids):
df = system_preds_df.copy()
train_df_grp = train_df[train_df["user_id"].isin(grp_ids)]
train_df_grp_avg = train_df_grp.groupby(by=["item_id"]).median().reset_index()
train_df_grp_avg_ids = train_df_grp_avg["item_id"].tolist()
ex_to_label = [] # IDs of comments to use for group model training
for i, score_bin in enumerate(score_bins):
min_score, max_score = score_bin
# get eligible comments to sample
cur_df = df[(df["rating"] >= min_score) & (df["rating"] < max_score) & (df["item_id"].isin(train_df_grp_avg_ids))]
comment_ids = cur_df.item_id.unique().tolist()
# sample comments
cur_n_label_per_bin = n_label_per_bin[i]
cap = min(len(comment_ids), (cur_n_label_per_bin))
to_label = np.random.choice(comment_ids, cap, replace=False)
ex_to_label.extend((to_label))
train_df_grp_avg = train_df_grp_avg[train_df_grp_avg["item_id"].isin(ex_to_label)]
ratings_grp = {ids_to_comments[int(r["item_id"])]: r["rating"] for _, r in train_df_grp_avg.iterrows()}
return ratings_grp
########################################
# SAVE_REPORT utils
# Convert the SEP field selection from the UI to the SEP enum value
def get_sep_enum(sep_selection):
if sep_selection == "Adversarial Example":
return "S0403: Adversarial Example"
elif sep_selection == "Accuracy":
return "P0204: Accuracy"
elif sep_selection == "Bias/Discrimination":
return "E0100: Bias/ Discrimination"
else:
return "P0200: Model issues"
# Format the description for the report including the provided title, error type, and text entry field ("Summary/Suggestions" text box)
def format_description(indie_label_json):
title = indie_label_json["title"]
error_type = indie_label_json["error_type"]
text_entry = indie_label_json["text_entry"]
return f"Title: {title}\nError Type: {error_type}\nSummary/Suggestions: {text_entry}"
# Convert indielabel json to AVID json format.
# See the AVID format in https://avidml.org/avidtools/reference/report
#
# Important mappings:
# IndieLabel Attribute AVID Attribute Example
# text_entry description "I think the Perspective API
# is too sensitive. Here are some examples."
# topic feature 0_shes_woman_lady_face
# persp_score model_score 0.94
# comment ori_input "She looks beautiful"
# user_rating personal_model_score 0.92
# user_decision user_decision "Non-toxic"
# Note that this is at the individual report level.
def convert_indie_label_json_to_avid_json(indie_label_json, cur_user, email, sep_selection):
# Setting up the structure with a dict to enable programmatic additions
avid_json_dict = {
"data_type": "AVID",
"data_version": None,
"metadata": None,
"affects": {
"developer": [],
"deployer": [
"Hugging Face"
],
# TODO: Make artifacts malleable during modularity work
"artifacts": [
{
"type": "Model",
"name": "Perspective API"
}
]
},
"problemtype": {
"classof": "Undefined", # I don't think any of the other ClassEnums are applicable. Link: https://avidml.org/avidtools/_modules/avidtools/datamodels/enums#ClassEnum
"type": "Detection",
"description": {
"lang": "eng", # TODO: Make language selectable
"value": "This report contains results from an end user audit conducted on Hugging Face."
}
},
"metrics": [ # Note: For the end users use case, I made each comment an example.
],
"references": [],
"description": {
"lang": "eng", # TODO: Make language selectable
"value": "" # Leaving empty so the report comments can be contained here.
},
"impact": {
"avid": {
"risk_domain": [
"Ethics"
],
"sep_view": [
"E0101: Group fairness"
],
"lifecycle_view": [
"L05: Evaluation"
],
"taxonomy_version": "0.2"
}
},
"credit": "", # Leaving empty so that credit can be assigned
"reported_date": "" # Leaving empty so that it can be dynamically filled in
}
avid_json_dict["description"] = format_description(indie_label_json)
avid_json_dict["reported_date"] = str(date.today())
# Assign credit to email if provided, otherwise default to randomly assigned username
if email != "":
avid_json_dict["credit"] = email
else:
avid_json_dict["credit"] = cur_user
sep_enum = get_sep_enum(sep_selection)
avid_json_dict["impact"]["avid"]["sep_view"] = [sep_enum]
for e in indie_label_json["evidence"]:
curr_metric = {}
curr_metric["name"] = "Perspective API"
curr_metric["detection_method"] = {
"type": "Detection",
"name": "Individual Example from End User Audit"
}
res_dict = {}
res_dict["feature"] = e["topic"]
res_dict["model_score"] = str(e["persp_score"]) # Converted to string to avoid Float type error with DB
res_dict["ori_input"] = e["comment"]
res_dict["personal_model_score"] = str(e["user_rating"]) # See above
res_dict["user_decision"] = e["user_decision"]
curr_metric["results"] = res_dict
avid_json_dict["metrics"].append(curr_metric)
new_report = json.dumps(avid_json_dict)
return new_report
########################################
# GET_PERSONALIZED_MODEL utils
def fetch_existing_data(user, model_name):
# Check if we have cached model performance
n_perf_files = get_n_perf_files(user, model_name)
if n_perf_files > 0:
# Fetch cached results
perf_file = get_perf_file(user, model_name, n_perf_files - 1) # Get last performance file
with open(perf_file, "rb") as f:
mae, mse, rmse, avg_diff = pickle.load(f)
else:
raise Exception(f"Model {model_name} does not exist")
# Fetch previous user-provided labels
ratings_prev = None
n_label_files = get_n_label_files(user, model_name)
if n_label_files > 0:
label_file = get_label_file(user, model_name, n_label_files - 1) # Get last label file
with open(label_file, "rb") as f:
ratings_prev = pickle.load(f)
return mae, mse, rmse, avg_diff, ratings_prev
# Main function called by server's `get_personalized_model` endpoint
# Trains an updated model with the specified name, user, and ratings
# Saves ratings, performance metrics, and pre-computed predictions to files
# - model_name: name of the model to train
# - ratings: dictionary of comments to ratings
# - user: user name
# - top_n: number of comments to train on (used when a set was held out for original user study)
# - topic: topic to train on (used when tuning for a specific topic)
def train_updated_model(model_name, ratings, user, top_n=None, topic=None, debug=False):
# Check if there is previously-labeled data; if so, combine it with this data
labeled_df = format_labeled_data(ratings, worker_id=user) # Treat ratings as full batch of all ratings
ratings_prev = None
# Filter out rows with "unsure" (-1)
labeled_df = labeled_df[labeled_df["rating"] != -1]
# Filter to top N for user study
if (topic is None) and (top_n is not None):
labeled_df = labeled_df.head(top_n)
else:
# For topic tuning, need to fetch old labels
n_label_files = get_n_label_files(user, model_name)
if n_label_files > 0:
# Concatenate previous set of labels with this new batch of labels
label_file = get_label_file(user, model_name, n_label_files - 1) # Get last label file
with open(label_file, "rb") as f:
ratings_prev = pickle.load(f)
labeled_df_prev = format_labeled_data(ratings_prev, worker_id=user)
labeled_df_prev = labeled_df_prev[labeled_df_prev["rating"] != -1]
ratings.update(ratings_prev) # append old ratings to ratings
labeled_df = pd.concat([labeled_df_prev, labeled_df])
if debug:
print("len ratings for training:", len(labeled_df))
# Save this batch of labels
label_file = get_label_file(user, model_name)
with open(label_file, "wb") as f:
pickle.dump(ratings, f)
# Train model
cur_model, _, _, _ = train_user_model(ratings_df=labeled_df)
# Compute performance metrics
mae, mse, rmse, avg_diff = users_perf(cur_model, worker_id=user)
# Save performance metrics
perf_file = get_perf_file(user, model_name)
with open(perf_file, "wb") as f:
pickle.dump((mae, mse, rmse, avg_diff), f)
# Pre-compute predictions for full dataset
cur_preds_df = get_preds_df(cur_model, [user], sys_eval_df=ratings_df_full)
# Save pre-computed predictions
preds_file = get_preds_file(user, model_name)
with open(preds_file, "wb") as f:
pickle.dump(cur_preds_df, f)
# Replace cached summary plot if it exists
show_overall_perf(cur_model=model_name, error_type="Both", cur_user=user, use_cache=False)
ratings_prev = ratings
return mae, mse, rmse, avg_diff, ratings_prev
def format_labeled_data(ratings, worker_id):
all_rows = []
for comment, rating in ratings.items():
comment_id = comments_to_ids[comment]
row = [worker_id, comment_id, int(rating)]
all_rows.append(row)
df = pd.DataFrame(all_rows, columns=["user_id", "item_id", "rating"])
return df
def users_perf(model, worker_id, sys_eval_df=sys_eval_df):
# Load the full empty dataset
sys_eval_comment_ids = sys_eval_df.item_id.unique().tolist()
empty_ratings_rows = [[worker_id, c_id, 0] for c_id in sys_eval_comment_ids]
empty_ratings_df = pd.DataFrame(empty_ratings_rows, columns=["user_id", "item_id", "rating"])
# Compute predictions for full dataset
reader = Reader(rating_scale=(0, 4))
eval_set_data = Dataset.load_from_df(empty_ratings_df, reader)
_, testset = train_test_split(eval_set_data, test_size=1.)
predictions = model.test(testset)
df = empty_ratings_df # user_id, item_id, rating
user_item_preds = get_predictions_by_user_and_item(predictions)
df["pred"] = df.apply(lambda row: user_item_preds[(row.user_id, row.item_id)] if (row.user_id, row.item_id) in user_item_preds else np.nan, axis=1)
df = df.merge(system_preds_df, on="item_id", how="left", suffixes=('', '_sys'))
df.dropna(subset = ["pred"], inplace=True)
df["rating"] = df.rating.astype("int32")
perf_metrics = get_overall_perf(df, worker_id) # mae, mse, rmse, avg_diff
return perf_metrics
def get_overall_perf(preds_df, user_id):
# Prepare dataset to calculate performance
y_pred = preds_df[preds_df["user_id"] == user_id].rating_sys.to_numpy() # system's prediction
y_true = preds_df[preds_df["user_id"] == user_id].pred.to_numpy() # user's (predicted) ground truth
# Get performance for user's model
mae = mean_absolute_error(y_true, y_pred)
mse = mean_squared_error(y_true, y_pred)
rmse = mean_squared_error(y_true, y_pred, squared=False)
avg_diff = np.mean(y_true - y_pred)
return mae, mse, rmse, avg_diff
def get_predictions_by_user_and_item(predictions):
user_item_preds = {}
for uid, iid, true_r, est, _ in predictions:
user_item_preds[(uid, iid)] = est
return user_item_preds
# Pre-computes predictions for the provided model and specified users on the system-eval dataset
# - model: trained model
# - user_ids: list of user IDs to compute predictions for
# - sys_eval_df: dataframe of system eval labels (pre-computed)
def get_preds_df(model, user_ids, sys_eval_df=sys_eval_df, bins=BINS, debug=False):
# Prep dataframe for all predictions we'd like to request
start = time.time()
sys_eval_comment_ids = sys_eval_df.item_id.unique().tolist()
empty_ratings_rows = []
for user_id in user_ids:
empty_ratings_rows.extend([[user_id, c_id, 0] for c_id in sys_eval_comment_ids])
empty_ratings_df = pd.DataFrame(empty_ratings_rows, columns=["user_id", "item_id", "rating"])
if debug:
print("setup", time.time() - start)
# Evaluate model to get predictions
start = time.time()
reader = Reader(rating_scale=(0, 4))
eval_set_data = Dataset.load_from_df(empty_ratings_df, reader)
_, testset = train_test_split(eval_set_data, test_size=1.)
predictions = model.test(testset)
if debug:
print("train_test_split", time.time() - start)
# Update dataframe with predictions
start = time.time()
df = empty_ratings_df.copy() # user_id, item_id, rating
user_item_preds = get_predictions_by_user_and_item(predictions)
df["pred"] = df.apply(lambda row: user_item_preds[(row.user_id, row.item_id)] if (row.user_id, row.item_id) in user_item_preds else np.nan, axis=1)
df = df.merge(system_preds_df, on="item_id", how="left", suffixes=('', '_sys'))
df.dropna(subset = ["pred"], inplace=True)
df["rating"] = df.rating.astype("int32")
# Get binned predictions (based on user prediction)
df["prediction_bin"], out_bins = pd.cut(df["pred"], bins, labels=False, retbins=True)
df = df.sort_values(by=["item_id"])
return df
# Given the full set of ratings, trains the specified model type and evaluates on the model eval set
# - ratings_df: dataframe of all ratings
# - train_df: dataframe of training labels
# - model_eval_df: dataframe of model eval labels (validation set)
# - train_frac: fraction of ratings to use for training
def train_user_model(ratings_df, train_df=train_df, model_eval_df=model_eval_df, train_frac=0.75, model_type="SVD", sim_type=None, user_based=True):
# Sample from shuffled labeled dataframe and add batch to train set; specified set size to model_eval set
labeled = ratings_df.sample(frac=1) # Shuffle the data
batch_size = math.floor(len(labeled) * train_frac)
labeled_train = labeled[:batch_size]
labeled_model_eval = labeled[batch_size:]
train_df_ext = train_df.append(labeled_train)
model_eval_df_ext = model_eval_df.append(labeled_model_eval)
# Train model and show model eval set results
model, perf = train_model(train_df_ext, model_eval_df_ext, model_type=model_type, sim_type=sim_type, user_based=user_based)
return model, perf, labeled_train, labeled_model_eval
# Given a set of labels split into training and validation (model_eval), trains the specified model type on the training labels and evaluates on the model_eval labels
# - train_df: dataframe of training labels
# - model_eval_df: dataframe of model eval labels (validation set)
# - model_type: type of model to train
def train_model(train_df, model_eval_df, model_type="SVD", sim_type=None, user_based=True, debug=False):
# Train model
reader = Reader(rating_scale=(0, 4))
train_data = Dataset.load_from_df(train_df, reader)
model_eval_data = Dataset.load_from_df(model_eval_df, reader)
train_set = train_data.build_full_trainset()
_, model_eval_set = train_test_split(model_eval_data, test_size=1.)
sim_options = {
"name": sim_type,
"user_based": user_based, # compute similarity between users or items
}
if model_type == "SVD":
algo = SVD() # SVD doesn't have similarity metric
elif model_type == "KNNBasic":
algo = KNNBasic(sim_options=sim_options)
elif model_type == "KNNWithMeans":
algo = KNNWithMeans(sim_options=sim_options)
elif model_type == "KNNWithZScore":
algo = KNNWithZScore(sim_options=sim_options)
algo.fit(train_set)
predictions = algo.test(model_eval_set)
rmse = accuracy.rmse(predictions)
fcp = accuracy.fcp(predictions)
mae = accuracy.mae(predictions)
mse = accuracy.mse(predictions)
if debug:
print(f"MAE: {mae}, MSE: {mse}, RMSE: {rmse}, FCP: {fcp}")
perf = [mae, mse, rmse, fcp]
return algo, perf
def plot_train_perf_results(user, model_name, mae):
n_perf_files = get_n_perf_files(user, model_name)
all_rows = []
for i in range(n_perf_files):
perf_file = get_perf_file(user, model_name, i)
with open(perf_file, "rb") as f:
mae, mse, rmse, avg_diff = pickle.load(f)
all_rows.append([i, mae, "Your MAE"])
df = pd.DataFrame(all_rows, columns=["version", "perf", "metric"])
chart = alt.Chart(df).mark_line(point=True).encode(
x="version:O",
y="perf",
color=alt.Color("metric", title="Performance metric"),
tooltip=[
alt.Tooltip('version:O', title='Version'),
alt.Tooltip('metric:N', title="Metric"),
alt.Tooltip('perf:Q', title="Metric Value", format=".3f"),
],
).properties(
title=f"Performance over model versions: {model_name}",
width=500,
)
# Manually set for now
mae_good = 1.0
mae_okay = 1.2
plot_dim_width = 500
domain_min = 0.0
domain_max = 2.0
bkgd = alt.Chart(pd.DataFrame({
"start": [mae_okay, mae_good, domain_min],
"stop": [domain_max, mae_okay, mae_good],
"bkgd": ["Needs improvement", "Okay", "Good"],
})).mark_rect(opacity=0.2).encode(
y=alt.Y("start:Q", scale=alt.Scale(domain=[0, domain_max]), title=""),
y2=alt.Y2("stop:Q", title="Performance (MAE)"),
x=alt.value(0),
x2=alt.value(plot_dim_width),
color=alt.Color("bkgd:O", scale=alt.Scale(
domain=["Needs improvement", "Okay", "Good"],
range=["red", "yellow", "green"]),
title="How good is your MAE?"
)
)
plot = (bkgd + chart).properties(width=plot_dim_width).resolve_scale(color='independent')
mae_status = None
if mae < mae_good:
mae_status = "Your MAE is in the <b>Good</b> range. Your model looks ready to go."
elif mae < mae_okay:
mae_status = "Your MAE is in the <b>Okay</b> range. Your model can be used, but you can provide additional labels to improve it."
else:
mae_status = "Your MAE is in the <b>Needs improvement</b> range. Your model may need additional labels to improve."
return plot, mae_status
########################################
# New visualizations
# Constants
VIS_BINS = np.round(np.arange(0, 4.01, 0.05), 3)
VIS_BINS_LABELS = [np.round(np.mean([x, y]), 3) for x, y in zip(VIS_BINS[:-1], VIS_BINS[1:])]
def get_key(sys, user, threshold):
if sys <= threshold and user <= threshold:
return "System agrees: Non-toxic"
elif sys > threshold and user > threshold:
return "System agrees: Toxic"
else:
if abs(sys - threshold) > 1.5:
return "System differs: Error > 1.5"
elif abs(sys - threshold) > 1.0:
return "System differs: Error > 1.0"
elif abs(sys - threshold) > 0.5:
return "System differs: Error > 0.5"
else:
return "System differs: Error <=0.5"
def get_key_no_model(sys, threshold):
if sys <= threshold:
return "System says: Non-toxic"
else:
return "System says: Toxic"
def get_user_color(user, threshold):
if user <= threshold:
return "#FFF" # white
else:
return "#808080" # grey
def get_system_color(sys, user, threshold):
if sys <= threshold and user <= threshold:
return "#FFF" # white
elif sys > threshold and user > threshold:
return "#808080" # grey
else:
if abs(sys - threshold) > 1.5:
return "#d62728" # red
elif abs(sys - threshold) > 1.0:
return "#ff7a5c" # med red
elif abs(sys - threshold) > 0.5:
return "#ffa894" # light red
else:
return "#ffd1c7" # very light red
def get_error_type(sys, user, threshold):
if sys <= threshold and user <= threshold:
return "No error (agree non-toxic)"
elif sys > threshold and user > threshold:
return "No error (agree toxic)"
elif sys <= threshold and user > threshold:
return "System may be under-sensitive"
elif sys > threshold and user <= threshold:
return "System may be over-sensitive"
def get_error_type_radio(sys, user, threshold):
if sys <= threshold and user <= threshold:
return "Show errors and non-errors"
elif sys > threshold and user > threshold:
return "Show errors and non-errors"
elif sys <= threshold and user > threshold:
return "System is under-sensitive"
elif sys > threshold and user <= threshold:
return "System is over-sensitive"
def get_error_magnitude(sys, user, threshold):
if sys <= threshold and user <= threshold:
return 0 # no classification error
elif sys > threshold and user > threshold:
return 0 # no classification error
elif sys <= threshold and user > threshold:
return abs(sys - user)
elif sys > threshold and user <= threshold:
return abs(sys - user)
def get_error_size(sys, user, threshold):
if sys <= threshold and user <= threshold:
return 0 # no classification error
elif sys > threshold and user > threshold:
return 0 # no classification error
elif sys <= threshold and user > threshold:
return sys - user
elif sys > threshold and user <= threshold:
return sys - user
def get_decision(rating, threshold):
if rating <= threshold:
return "Non-toxic"
else:
return "Toxic"
def get_category(row, threshold=0.3):
k_to_category = {
"is_profane_frac": "Profanity",
"is_threat_frac": "Threat",
"is_identity_attack_frac": "Identity Attack",
"is_insult_frac": "Insult",
"is_sexual_harassment_frac": "Sexual Harassment",
}
categories = []
for k in ["is_profane_frac", "is_threat_frac", "is_identity_attack_frac", "is_insult_frac", "is_sexual_harassment_frac"]:
if row[k] > threshold:
categories.append(k_to_category[k])
if len(categories) > 0:
return ", ".join(categories)
else:
return ""
def get_comment_url(row):
return f"#{row['item_id']}/#comment"
def get_topic_url(row):
return f"#{row['topic']}/#topic"
# Plots overall results histogram (each block is a topic)
def plot_overall_vis(preds_df, error_type, cur_user, cur_model, n_topics=None, bins=VIS_BINS, threshold=TOXIC_THRESHOLD, sys_col="rating_sys"):
df = preds_df.copy().reset_index()
if n_topics is not None:
df = df[df["topic_id"] < n_topics]
df["vis_pred_bin"], out_bins = pd.cut(df["pred"], bins, labels=VIS_BINS_LABELS, retbins=True)
df = df[df["user_id"] == cur_user].sort_values(by=["item_id"]).reset_index()
df["system_label"] = [("toxic" if r > threshold else "non-toxic") for r in df[sys_col].tolist()]
df["threshold"] = [threshold for r in df[sys_col].tolist()]
df["key"] = [get_key(sys, user, threshold) for sys, user in zip(df[sys_col].tolist(), df["pred"].tolist())]
df["url"] = df.apply(lambda row: get_topic_url(row), axis=1)
# Plot sizing
domain_min = 0
domain_max = 4
plot_dim_height = 500
plot_dim_width = 750
max_items = np.max(df["vis_pred_bin"].value_counts().tolist())
mark_size = np.round(plot_dim_height / max_items) * 8
if mark_size > 75:
mark_size = 75
plot_dim_height = 13 * max_items
# Main chart
chart = alt.Chart(df).mark_square(opacity=0.8, size=mark_size, stroke="grey", strokeWidth=0.5).transform_window(
groupby=['vis_pred_bin'],
sort=[{'field': sys_col}],
id='row_number()',
ignorePeers=True,
).encode(
x=alt.X('vis_pred_bin:Q', title="Our prediction of your rating", scale=alt.Scale(domain=(domain_min, domain_max))),
y=alt.Y('id:O', title="Topics (ordered by System toxicity rating)", axis=alt.Axis(values=list(range(0, max_items, 5))), sort='descending'),
color = alt.Color("key:O", scale=alt.Scale(
domain=["System agrees: Non-toxic", "System agrees: Toxic", "System differs: Error > 1.5", "System differs: Error > 1.0", "System differs: Error > 0.5", "System differs: Error <=0.5"],
range=["white", "#cbcbcb", "red", "#ff7a5c", "#ffa894", "#ffd1c7"]),
title="System rating (box color)"
),
href="url:N",
tooltip = [
alt.Tooltip("topic:N", title="Topic"),
alt.Tooltip("system_label:N", title="System label"),
alt.Tooltip(f"{sys_col}:Q", title="System rating", format=".2f"),
alt.Tooltip("pred:Q", title="Your rating", format=".2f")
]
)
# Filter to specified error type
if error_type == "System is under-sensitive":
# FN: system rates non-toxic, but user rates toxic
chart = chart.transform_filter(
alt.FieldGTPredicate(field="pred", gt=threshold)
)
elif error_type == "System is over-sensitive":
# FP: system rates toxic, but user rates non-toxic
chart = chart.transform_filter(
alt.FieldLTEPredicate(field="pred", lte=threshold)
)
# Threshold line
rule = alt.Chart(pd.DataFrame({
"threshold": [threshold],
"System threshold": [f"Threshold = {threshold}"]
})).mark_rule().encode(
x=alt.X("mean(threshold):Q", scale=alt.Scale(domain=(domain_min, domain_max)), title=""),
color=alt.Color("System threshold:N", scale=alt.Scale(domain=[f"Threshold = {threshold}"], range=["grey"])),
size=alt.value(2),
)
# Plot region annotations
nontoxic_x = (domain_min + threshold) / 2.
toxic_x = (domain_max + threshold) / 2.
annotation = alt.Chart(pd.DataFrame({
"annotation_text": ["Non-toxic", "Toxic"],
"x": [nontoxic_x, toxic_x],
"y": [max_items, max_items],
})).mark_text(
align="center",
baseline="middle",
fontSize=16,
dy=10,
color="grey"
).encode(
x=alt.X("x", title=""),
y=alt.Y("y", title="", axis=None),
text="annotation_text"
)
# Plot region background colors
bkgd = alt.Chart(pd.DataFrame({
"start": [domain_min, threshold],
"stop": [threshold, domain_max],
"bkgd": ["Non-toxic (L side)", "Toxic (R side)"],
})).mark_rect(opacity=1.0, stroke="grey", strokeWidth=0.25).encode(
x=alt.X("start:Q", scale=alt.Scale(domain=[domain_min, domain_max])),
x2=alt.X2("stop:Q"),
y=alt.value(0),
y2=alt.value(plot_dim_height),
color=alt.Color("bkgd:O", scale=alt.Scale(
domain=["Non-toxic (L side)", "Toxic (R side)"],
range=["white", "#cbcbcb"]),
title="Your rating (background color)"
)
)
plot = (bkgd + annotation + chart + rule).properties(height=(plot_dim_height), width=plot_dim_width).resolve_scale(color='independent').to_json()
return plot
# Plots cluster results histogram (each block is a comment), but *without* a model
# as a point of reference (in contrast to plot_overall_vis_cluster)
def plot_overall_vis_cluster_no_model(cur_user, preds_df, n_comments=None, bins=VIS_BINS, threshold=TOXIC_THRESHOLD, sys_col="rating_sys"):
df = preds_df.copy().reset_index()
df["vis_pred_bin"], out_bins = pd.cut(df[sys_col], bins, labels=VIS_BINS_LABELS, retbins=True)
df = df[df["user_id"] == cur_user].sort_values(by=[sys_col]).reset_index()
df["system_label"] = [("toxic" if r > threshold else "non-toxic") for r in df[sys_col].tolist()]
df["key"] = [get_key_no_model(sys, threshold) for sys in df[sys_col].tolist()]
df["category"] = df.apply(lambda row: get_category(row), axis=1)
df["url"] = df.apply(lambda row: get_comment_url(row), axis=1)
if n_comments is not None:
n_to_sample = np.min([n_comments, len(df)])
df = df.sample(n=n_to_sample)
# Plot sizing
domain_min = 0
domain_max = 4
plot_dim_height = 500
plot_dim_width = 750
max_items = np.max(df["vis_pred_bin"].value_counts().tolist())
mark_size = np.round(plot_dim_height / max_items) * 8
if mark_size > 75:
mark_size = 75
plot_dim_height = 13 * max_items
# Main chart
chart = alt.Chart(df).mark_square(opacity=0.8, size=mark_size, stroke="grey", strokeWidth=0.25).transform_window(
groupby=['vis_pred_bin'],
sort=[{'field': sys_col}],
id='row_number()',
ignorePeers=True
).encode(
x=alt.X('vis_pred_bin:Q', title="System toxicity rating", scale=alt.Scale(domain=(domain_min, domain_max))),
y=alt.Y('id:O', title="Comments (ordered by System toxicity rating)", axis=alt.Axis(values=list(range(0, max_items, 5))), sort='descending'),
color = alt.Color("key:O", scale=alt.Scale(
domain=["System says: Non-toxic", "System says: Toxic"],
range=["white", "#cbcbcb"]),
title="System rating",
legend=None,
),
href="url:N",
tooltip = [
alt.Tooltip("comment:N", title="comment"),
alt.Tooltip(f"{sys_col}:Q", title="System rating", format=".2f"),
]
)
# Threshold line
rule = alt.Chart(pd.DataFrame({
"threshold": [threshold],
})).mark_rule(color='grey').encode(
x=alt.X("mean(threshold):Q", scale=alt.Scale(domain=[domain_min, domain_max]), title=""),
size=alt.value(2),
)
# Plot region annotations
nontoxic_x = (domain_min + threshold) / 2.
toxic_x = (domain_max + threshold) / 2.
annotation = alt.Chart(pd.DataFrame({
"annotation_text": ["Non-toxic", "Toxic"],
"x": [nontoxic_x, toxic_x],
"y": [max_items, max_items],
})).mark_text(
align="center",
baseline="middle",
fontSize=16,
dy=10,
color="grey"
).encode(
x=alt.X("x", title=""),
y=alt.Y("y", title="", axis=None),
text="annotation_text"
)
# Plot region background colors
bkgd = alt.Chart(pd.DataFrame({
"start": [domain_min, threshold],
"stop": [threshold, domain_max],
"bkgd": ["Non-toxic", "Toxic"],
})).mark_rect(opacity=1.0, stroke="grey", strokeWidth=0.25).encode(
x=alt.X("start:Q", scale=alt.Scale(domain=[domain_min, domain_max])),
x2=alt.X2("stop:Q"),
y=alt.value(0),
y2=alt.value(plot_dim_height),
color=alt.Color("bkgd:O", scale=alt.Scale(
domain=["Non-toxic", "Toxic"],
range=["white", "#cbcbcb"]),
title="System rating"
)
)
final_plot = (bkgd + annotation + chart + rule).properties(height=(plot_dim_height), width=plot_dim_width).resolve_scale(color='independent').to_json()
return final_plot, df
# Plots cluster results histogram (each block is a comment) *with* a model as a point of reference
def plot_overall_vis_cluster(cur_user, preds_df, error_type, n_comments=None, bins=VIS_BINS, threshold=TOXIC_THRESHOLD, sys_col="rating_sys"):
df = preds_df.copy().reset_index()
df["vis_pred_bin"], out_bins = pd.cut(df["pred"], bins, labels=VIS_BINS_LABELS, retbins=True)
df = df[df["user_id"] == cur_user].sort_values(by=[sys_col]).reset_index(drop=True)
df["system_label"] = [("toxic" if r > threshold else "non-toxic") for r in df[sys_col].tolist()]
df["key"] = [get_key(sys, user, threshold) for sys, user in zip(df[sys_col].tolist(), df["pred"].tolist())]
df["category"] = df.apply(lambda row: get_category(row), axis=1)
df["url"] = df.apply(lambda row: get_comment_url(row), axis=1)
if n_comments is not None:
n_to_sample = np.min([n_comments, len(df)])
df = df.sample(n=n_to_sample)
# Plot sizing
domain_min = 0
domain_max = 4
plot_dim_height = 500
plot_dim_width = 750
max_items = np.max(df["vis_pred_bin"].value_counts().tolist())
mark_size = np.round(plot_dim_height / max_items) * 8
if mark_size > 75:
mark_size = 75
plot_dim_height = 13 * max_items
# Main chart
chart = alt.Chart(df).mark_square(opacity=0.8, size=mark_size, stroke="grey", strokeWidth=0.25).transform_window(
groupby=['vis_pred_bin'],
sort=[{'field': sys_col}],
id='row_number()',
ignorePeers=True
).encode(
x=alt.X('vis_pred_bin:Q', title="Our prediction of your rating", scale=alt.Scale(domain=(domain_min, domain_max))),
y=alt.Y('id:O', title="Comments (ordered by System toxicity rating)", axis=alt.Axis(values=list(range(0, max_items, 5))), sort='descending'),
color = alt.Color("key:O", scale=alt.Scale(
domain=["System agrees: Non-toxic", "System agrees: Toxic", "System differs: Error > 1.5", "System differs: Error > 1.0", "System differs: Error > 0.5", "System differs: Error <=0.5"],
range=["white", "#cbcbcb", "red", "#ff7a5c", "#ffa894", "#ffd1c7"]),
title="System rating (box color)"
),
href="url:N",
tooltip = [
alt.Tooltip("comment:N", title="comment"),
alt.Tooltip(f"{sys_col}:Q", title="System rating", format=".2f"),
alt.Tooltip("pred:Q", title="Your rating", format=".2f"),
alt.Tooltip("category:N", title="Potential toxicity categories")
]
)
# Filter to specified error type
if error_type == "System is under-sensitive":
# FN: system rates non-toxic, but user rates toxic
chart = chart.transform_filter(
alt.FieldGTPredicate(field="pred", gt=threshold)
)
elif error_type == "System is over-sensitive":
# FP: system rates toxic, but user rates non-toxic
chart = chart.transform_filter(
alt.FieldLTEPredicate(field="pred", lte=threshold)
)
# Threshold line
rule = alt.Chart(pd.DataFrame({
"threshold": [threshold],
})).mark_rule(color='grey').encode(
x=alt.X("mean(threshold):Q", scale=alt.Scale(domain=[domain_min, domain_max]), title=""),
size=alt.value(2),
)
# Plot region annotations
nontoxic_x = (domain_min + threshold) / 2.
toxic_x = (domain_max + threshold) / 2.
annotation = alt.Chart(pd.DataFrame({
"annotation_text": ["Non-toxic", "Toxic"],
"x": [nontoxic_x, toxic_x],
"y": [max_items, max_items],
})).mark_text(
align="center",
baseline="middle",
fontSize=16,
dy=10,
color="grey"
).encode(
x=alt.X("x", title=""),
y=alt.Y("y", title="", axis=None),
text="annotation_text"
)
# Plot region background colors
bkgd = alt.Chart(pd.DataFrame({
"start": [domain_min, threshold],
"stop": [threshold, domain_max],
"bkgd": ["Non-toxic (L side)", "Toxic (R side)"],
})).mark_rect(opacity=1.0, stroke="grey", strokeWidth=0.25).encode(
x=alt.X("start:Q", scale=alt.Scale(domain=[domain_min, domain_max])),
x2=alt.X2("stop:Q"),
y=alt.value(0),
y2=alt.value(plot_dim_height),
color=alt.Color("bkgd:O", scale=alt.Scale(
domain=["Non-toxic (L side)", "Toxic (R side)"],
range=["white", "#cbcbcb"]),
title="Your rating (background color)"
)
)
final_plot = (bkgd + annotation + chart + rule).properties(height=(plot_dim_height), width=plot_dim_width).resolve_scale(color='independent').to_json()
return final_plot, df
def get_cluster_comments(df, error_type, threshold=TOXIC_THRESHOLD, sys_col="rating_sys", use_model=True, debug=False):
df["user_color"] = [get_user_color(user, threshold) for user in df["pred"].tolist()] # get cell colors
df["system_color"] = [get_user_color(sys, threshold) for sys in df[sys_col].tolist()] # get cell colors
df["error_color"] = [get_system_color(sys, user, threshold) for sys, user in zip(df[sys_col].tolist(), df["pred"].tolist())] # get cell colors
df["error_type"] = [get_error_type(sys, user, threshold) for sys, user in zip(df[sys_col].tolist(), df["pred"].tolist())] # get error type in words
df["error_amt"] = [abs(sys - threshold) for sys in df[sys_col].tolist()] # get raw error
df["judgment"] = ["" for _ in range(len(df))] # template for "agree" or "disagree" buttons
if use_model:
df = df.sort_values(by=["error_amt"], ascending=False) # surface largest errors first
else:
if debug:
print("get_cluster_comments; not using model")
df = df.sort_values(by=[sys_col], ascending=True)
df["id"] = df["item_id"]
df["toxicity_category"] = df["category"]
df["user_rating"] = df["pred"]
df["user_decision"] = [get_decision(rating, threshold) for rating in df["pred"].tolist()]
df["system_rating"] = df[sys_col]
df["system_decision"] = [get_decision(rating, threshold) for rating in df[sys_col].tolist()]
df = df.round(decimals=2)
# Filter to specified error type
if error_type == "System is under-sensitive":
# FN: system rates non-toxic, but user rates toxic
df = df[df["error_type"] == "System may be under-sensitive"]
elif error_type == "System is over-sensitive":
# FP: system rates toxic, but user rates non-toxic
df = df[df["error_type"] == "System may be over-sensitive" ]
elif error_type == "Both":
df = df[(df["error_type"] == "System may be under-sensitive") | (df["error_type"] == "System may be over-sensitive")]
return df
# PERSONALIZED CLUSTERS utils
def get_disagreement_comments(preds_df, mode, n=10_000, threshold=TOXIC_THRESHOLD):
# Get difference between user rating and system rating
df = preds_df.copy()
df["diff"] = [get_error_size(sys, user, threshold) for sys, user in zip(df["rating"].tolist(), df["pred"].tolist())]
df["error_type"] = [get_error_type(sys, user, threshold) for sys, user in zip(df["rating"].tolist(), df["pred"].tolist())]
# asc = low to high; lowest = sys lower than user (under-sensitive)
# desc = high to low; lowest = sys higher than user (over-sensitive)
if mode == "under-sensitive":
df = df[df["error_type"] == "System may be under-sensitive"]
asc = True
elif mode == "over-sensitive":
df = df[df["error_type"] == "System may be over-sensitive"]
asc = False
df = df.sort_values(by=["diff"], ascending=asc)
df = df.head(n)
return df["comment"].tolist(), df
def get_explore_df(n_examples, threshold):
df = system_preds_df.sample(n=n_examples)
df["system_decision"] = [get_decision(rating, threshold) for rating in df["rating"].tolist()]
df["system_color"] = [get_user_color(sys, threshold) for sys in df["rating"].tolist()] # get cell colors
return df |