Spaces:
Running
Running
File size: 6,952 Bytes
c1ca117 fef6f0f 4b3ee30 c1ca117 ba9176f c1ca117 dfd6986 c1ca117 dfd6986 c1ca117 dfd6986 c1ca117 dfd6986 c1ca117 dfd6986 c1ca117 dfd6986 c1ca117 dfd6986 c1ca117 dfd6986 c1ca117 dfd6986 c1ca117 dfd6986 c1ca117 efd3d3c c1ca117 dfd6986 c1ca117 dfd6986 c1ca117 dfd6986 c1ca117 efd3d3c c1ca117 dfd6986 efd3d3c c1ca117 ba9176f dfd6986 c1ca117 dfd6986 c1ca117 dfd6986 c1ca117 dfd6986 c1ca117 dfd6986 c1ca117 dfd6986 c1ca117 4b3ee30 c1ca117 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import gradio as gr
import random
import time
from datetime import datetime
import tempfile
import os
import edge_tts
import asyncio
import warnings
from gradio_client import Client
import json
import pytz
import re
warnings.filterwarnings('ignore')
# Initialize the Gradio client for model access
def initialize_clients():
try:
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
return client
except Exception as e:
print(f"Error initializing client: {str(e)}")
return None
if "client" not in locals():
CLIENT = initialize_clients()
# Helper function to generate a filename
def gen_AI_IO_filename(display_query, output):
now_central = datetime.now(pytz.timezone("America/Chicago"))
timestamp = now_central.strftime("%Y-%m-%d-%I-%M-%S-%f-%p")
display_query = display_query[:50]
output_snippet = re.sub(r'[^A-Za-z0-9]+', '_', output[:100])
filename = f"{timestamp} - {display_query} - {output_snippet}.md"
return filename
def create_file(filename, prompt, response, should_save=True):
"""Create and save a file with prompt and response"""
if not should_save:
return
with open(filename, 'w', encoding='utf-8') as file:
file.write(f"Prompt:\n{prompt}\n\nResponse:\n{response}")
async def generate_speech(text, voice="en-US-AriaNeural"):
"""Generate speech from text using edge-tts"""
try:
communicate = edge_tts.Communicate(text, voice)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path
except Exception as e:
print(f"Error in text2speech: {str(e)}")
return None
def generate_story(prompt, model_choice):
"""Generate story using specified model through ArXiv RAG pattern"""
try:
if CLIENT is None:
return "Error: Story generation service is not available."
# First pass: Generate initial story with chosen model
initial_result = CLIENT.predict(
prompt=prompt,
llm_model_picked=model_choice,
stream_outputs=True,
api_name="/ask_llm"
)
# Second pass: Enhance with RAG pattern
enhanced_result = CLIENT.predict(
message=prompt,
llm_results_use=10,
database_choice="Semantic Search",
llm_model_picked=model_choice,
api_name="/update_with_rag_md"
)
# Combine results and save
story = initial_result + "\n\nEnhanced version:\n" + enhanced_result[0]
# Save outputs
filename = gen_AI_IO_filename("Story", initial_result)
create_file(filename, prompt, initial_result)
filename = gen_AI_IO_filename("Enhanced", enhanced_result[0])
create_file(filename, prompt, enhanced_result[0])
return story
except Exception as e:
return f"Error generating story: {str(e)}"
def story_generator_interface(prompt, genre, structure, model_choice, num_scenes, words_per_scene):
"""Main story generation and audio creation function"""
try:
# Create storytelling prompt
story_prompt = f"""Create a {genre} story following this structure: {structure}
Base concept: {prompt}
Make it engaging and suitable for narration.
Include vivid descriptions and sensory details.
Use approximately {words_per_scene} words per scene.
Create {num_scenes} distinct scenes."""
# Generate story
story = generate_story(story_prompt, model_choice)
if story.startswith("Error"):
return story, None
# Generate speech
audio_path = asyncio.run(generate_speech(story))
return story, audio_path
except Exception as e:
error_msg = f"An error occurred: {str(e)}"
return error_msg, None
# Create Gradio interface
with gr.Blocks(title="AI Story Generator", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# ๐ญ AI Story Generator
Generate creative stories with AI and listen to them! Using Mistral and Mixtral models.
""")
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(
label="Story Concept",
placeholder="Enter your story idea...",
lines=3
)
genre_input = gr.Dropdown(
label="Genre",
choices=[
"Science Fiction",
"Fantasy",
"Mystery",
"Romance",
"Horror",
"Adventure",
"Historical Fiction",
"Comedy"
],
value="Fantasy"
)
structure_input = gr.Dropdown(
label="Story Structure",
choices=[
"Three Act (Setup -> Confrontation -> Resolution)",
"Hero's Journey (Call -> Adventure -> Return)",
"Five Act (Exposition -> Rising Action -> Climax -> Falling Action -> Resolution)"
],
value="Three Act (Setup -> Confrontation -> Resolution)"
)
model_choice = gr.Dropdown(
label="Model",
choices=[
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-7B-Instruct-v0.2"
],
value="mistralai/Mixtral-8x7B-Instruct-v0.1"
)
num_scenes = gr.Slider(
label="Number of Scenes",
minimum=3,
maximum=7,
value=5,
step=1
)
words_per_scene = gr.Slider(
label="Words per Scene",
minimum=20,
maximum=100,
value=50,
step=10
)
generate_btn = gr.Button("Generate Story")
with gr.Row():
with gr.Column():
story_output = gr.Textbox(
label="Generated Story",
lines=10,
interactive=False
)
with gr.Row():
audio_output = gr.Audio(
label="Story Narration",
type="filepath"
)
generate_btn.click(
fn=story_generator_interface,
inputs=[
prompt_input,
genre_input,
structure_input,
model_choice,
num_scenes,
words_per_scene
],
outputs=[
story_output,
audio_output
]
)
if __name__ == "__main__":
demo.launch(
debug=True,
share=True,
server_name="0.0.0.0",
server_port=7860
) |