File size: 8,299 Bytes
fef6f0f
 
 
4b3ee30
fef6f0f
 
 
4b3ee30
fef6f0f
 
 
 
 
4b3ee30
fef6f0f
4b3ee30
efd3d3c
 
 
 
 
 
 
 
 
 
 
 
 
 
4b3ee30
fef6f0f
 
 
 
 
 
 
 
 
 
4b3ee30
fef6f0f
 
 
 
 
 
4b3ee30
fef6f0f
 
a0010c7
fef6f0f
 
 
 
 
a0010c7
fef6f0f
efd3d3c
9e1ef69
fef6f0f
 
 
 
 
 
 
 
 
 
 
 
 
a0010c7
efd3d3c
 
 
 
fef6f0f
 
4b3ee30
 
 
fef6f0f
a0010c7
fef6f0f
9e1ef69
fef6f0f
 
 
efd3d3c
 
 
 
fef6f0f
efd3d3c
fef6f0f
 
 
efd3d3c
fef6f0f
4b3ee30
fef6f0f
 
efd3d3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b3ee30
fef6f0f
 
efd3d3c
 
 
fef6f0f
 
 
 
 
 
 
 
 
 
4b3ee30
fef6f0f
 
efd3d3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b3ee30
fef6f0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b3ee30
 
fef6f0f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import gradio as gr
import random
import time
from datetime import datetime
import tempfile
import os
from moviepy.editor import ImageClip, concatenate_videoclips
from gradio_client import Client
from PIL import Image
import edge_tts
import asyncio
import warnings
import numpy as np

warnings.filterwarnings('ignore')

# Initialize Gradio clients with public demo spaces
def initialize_clients():
    try:
        # Use a public Stable Diffusion demo space instead of SDXL
        image_client = Client("gradio/stable-diffusion-2")
        arxiv_client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
        return image_client, arxiv_client
    except Exception as e:
        print(f"Error initializing clients: {str(e)}")
        return None, None

if gr.NO_RELOAD:
    # Initialize clients in NO_RELOAD block to prevent multiple initializations
    IMAGE_CLIENT, ARXIV_CLIENT = initialize_clients()

STORY_GENRES = [
    "Science Fiction",
    "Fantasy",
    "Mystery",
    "Romance",
    "Horror",
    "Adventure",
    "Historical Fiction",
    "Comedy"
]

STORY_STRUCTURES = {
    "Three Act": "Setup (Introduction, Inciting Incident) -> Confrontation (Rising Action, Climax) -> Resolution (Falling Action, Conclusion)",
    "Hero's Journey": "Ordinary World -> Call to Adventure -> Trials -> Transformation -> Return",
    "Five Act": "Exposition -> Rising Action -> Climax -> Falling Action -> Resolution",
    "Seven Point": "Hook -> Plot Turn 1 -> Pinch Point 1 -> Midpoint -> Pinch Point 2 -> Plot Turn 2 -> Resolution"
}

async def generate_speech(text, voice="en-US-AriaNeural"):
    """Generate speech from text using edge-tts"""
    try:
        communicate = edge_tts.Communicate(text, voice)
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
            tmp_path = tmp_file.name
            await communicate.save(tmp_path)
        return tmp_path
    except Exception as e:
        print(f"Error in text2speech: {str(e)}")
        return None

def generate_story_prompt(base_prompt, genre, structure):
    """Generate an expanded story prompt based on genre and structure"""
    prompt = f"""Create a {genre} story using this concept: '{base_prompt}'
    Follow this structure: {STORY_STRUCTURES[structure]}
    Include vivid descriptions and sensory details.
    Make it engaging and suitable for visualization.
    Keep each scene description clear and detailed enough for image generation.
    Limit the story to 5-7 key scenes.
    """
    return prompt

def generate_story(prompt, model_choice):
    """Generate story using specified model"""
    try:
        if ARXIV_CLIENT is None:
            return "Error: Story generation service is not available."
        
        result = ARXIV_CLIENT.predict(
            prompt,
            model_choice,
            True,
            api_name="/ask_llm"
        )
        return result
    except Exception as e:
        return f"Error generating story: {str(e)}"

def generate_image_from_text(text_prompt):
    """Generate an image from text description"""
    try:
        if IMAGE_CLIENT is None:
            return None
            
        result = IMAGE_CLIENT.predict(
            text_prompt,
            api_name="/predict"  # Updated API endpoint for the public demo
        )
        return result
    except Exception as e:
        print(f"Error generating image: {str(e)}")
        return None

def create_video_from_images(image_paths, durations):
    """Create video from a series of images"""
    try:
        if not image_paths:
            return None
            
        clips = [ImageClip(img_path).set_duration(dur) for img_path, dur in zip(image_paths, durations) if os.path.exists(img_path)]
        if not clips:
            return None
            
        final_clip = concatenate_videoclips(clips, method="compose")
        output_path = tempfile.mktemp(suffix=".mp4")
        final_clip.write_videofile(output_path, fps=24)
        return output_path
    except Exception as e:
        print(f"Error creating video: {str(e)}")
        return None

def process_story(story_text, num_scenes=5):
    """Break story into scenes for visualization"""
    if not story_text:
        return []
        
    sentences = story_text.split('.')
    scenes = []
    scene_length = max(1, len(sentences) // num_scenes)
    
    for i in range(0, len(sentences), scene_length):
        scene = '. '.join(sentences[i:i+scene_length]).strip()
        if scene:
            scenes.append(scene)
    
    return scenes[:num_scenes]

def story_generator_interface(prompt, genre, structure, model_choice, num_scenes, words_per_scene):
    """Main story generation and multimedia creation function"""
    try:
        # Generate expanded prompt
        story_prompt = generate_story_prompt(prompt, genre, structure)
        
        # Generate story
        story = generate_story(story_prompt, model_choice)
        if story.startswith("Error"):
            return story, None, None, None
        
        # Process story into scenes
        scenes = process_story(story, num_scenes)
        
        # Generate images for each scene
        image_paths = []
        for scene in scenes:
            image = generate_image_from_text(scene)
            if image is not None:
                if isinstance(image, (str, bytes)):
                    image_paths.append(image)
                else:
                    temp_path = tempfile.mktemp(suffix=".png")
                    Image.fromarray(image).save(temp_path)
                    image_paths.append(temp_path)
        
        # Generate speech
        audio_path = asyncio.run(generate_speech(story))
        
        # Create video if we have images
        if image_paths:
            scene_durations = [5.0] * len(image_paths)  # 5 seconds per scene
            video_path = create_video_from_images(image_paths, scene_durations)
        else:
            video_path = None
        
        return story, image_paths, audio_path, video_path
        
    except Exception as e:
        error_msg = f"An error occurred: {str(e)}"
        return error_msg, None, None, None

# Create Gradio interface
with gr.Blocks(title="AI Story Generator & Visualizer") as demo:
    gr.Markdown("# ๐ŸŽญ AI Story Generator & Visualizer")
    
    with gr.Row():
        with gr.Column():
            prompt_input = gr.Textbox(
                label="Story Concept",
                placeholder="Enter your story idea...",
                lines=3
            )
            genre_input = gr.Dropdown(
                label="Genre",
                choices=STORY_GENRES,
                value="Fantasy"
            )
            structure_input = gr.Dropdown(
                label="Story Structure",
                choices=list(STORY_STRUCTURES.keys()),
                value="Three Act"
            )
            model_choice = gr.Dropdown(
                label="Model",
                choices=["mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.2"],
                value="mistralai/Mixtral-8x7B-Instruct-v0.1"
            )
            num_scenes = gr.Slider(
                label="Number of Scenes",
                minimum=3,
                maximum=7,
                value=5,
                step=1
            )
            words_per_scene = gr.Slider(
                label="Words per Scene",
                minimum=20,
                maximum=100,
                value=50,
                step=10
            )
            generate_btn = gr.Button("Generate Story & Media")
    
    with gr.Row():
        with gr.Column():
            story_output = gr.Textbox(
                label="Generated Story",
                lines=10,
                readonly=True
            )
        with gr.Column():
            gallery = gr.Gallery(label="Scene Visualizations")
    
    with gr.Row():
        audio_output = gr.Audio(label="Story Narration")
        video_output = gr.Video(label="Story Video")
    
    generate_btn.click(
        fn=story_generator_interface,
        inputs=[prompt_input, genre_input, structure_input, model_choice, num_scenes, words_per_scene],
        outputs=[story_output, gallery, audio_output, video_output]
    )

if __name__ == "__main__":
    demo.launch(reload=True)