Spaces:
Running
Running
File size: 8,299 Bytes
fef6f0f 4b3ee30 fef6f0f 4b3ee30 fef6f0f 4b3ee30 fef6f0f 4b3ee30 efd3d3c 4b3ee30 fef6f0f 4b3ee30 fef6f0f 4b3ee30 fef6f0f a0010c7 fef6f0f a0010c7 fef6f0f efd3d3c 9e1ef69 fef6f0f a0010c7 efd3d3c fef6f0f 4b3ee30 fef6f0f a0010c7 fef6f0f 9e1ef69 fef6f0f efd3d3c fef6f0f efd3d3c fef6f0f efd3d3c fef6f0f 4b3ee30 fef6f0f efd3d3c 4b3ee30 fef6f0f efd3d3c fef6f0f 4b3ee30 fef6f0f efd3d3c 4b3ee30 fef6f0f 4b3ee30 fef6f0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import gradio as gr
import random
import time
from datetime import datetime
import tempfile
import os
from moviepy.editor import ImageClip, concatenate_videoclips
from gradio_client import Client
from PIL import Image
import edge_tts
import asyncio
import warnings
import numpy as np
warnings.filterwarnings('ignore')
# Initialize Gradio clients with public demo spaces
def initialize_clients():
try:
# Use a public Stable Diffusion demo space instead of SDXL
image_client = Client("gradio/stable-diffusion-2")
arxiv_client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
return image_client, arxiv_client
except Exception as e:
print(f"Error initializing clients: {str(e)}")
return None, None
if gr.NO_RELOAD:
# Initialize clients in NO_RELOAD block to prevent multiple initializations
IMAGE_CLIENT, ARXIV_CLIENT = initialize_clients()
STORY_GENRES = [
"Science Fiction",
"Fantasy",
"Mystery",
"Romance",
"Horror",
"Adventure",
"Historical Fiction",
"Comedy"
]
STORY_STRUCTURES = {
"Three Act": "Setup (Introduction, Inciting Incident) -> Confrontation (Rising Action, Climax) -> Resolution (Falling Action, Conclusion)",
"Hero's Journey": "Ordinary World -> Call to Adventure -> Trials -> Transformation -> Return",
"Five Act": "Exposition -> Rising Action -> Climax -> Falling Action -> Resolution",
"Seven Point": "Hook -> Plot Turn 1 -> Pinch Point 1 -> Midpoint -> Pinch Point 2 -> Plot Turn 2 -> Resolution"
}
async def generate_speech(text, voice="en-US-AriaNeural"):
"""Generate speech from text using edge-tts"""
try:
communicate = edge_tts.Communicate(text, voice)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path
except Exception as e:
print(f"Error in text2speech: {str(e)}")
return None
def generate_story_prompt(base_prompt, genre, structure):
"""Generate an expanded story prompt based on genre and structure"""
prompt = f"""Create a {genre} story using this concept: '{base_prompt}'
Follow this structure: {STORY_STRUCTURES[structure]}
Include vivid descriptions and sensory details.
Make it engaging and suitable for visualization.
Keep each scene description clear and detailed enough for image generation.
Limit the story to 5-7 key scenes.
"""
return prompt
def generate_story(prompt, model_choice):
"""Generate story using specified model"""
try:
if ARXIV_CLIENT is None:
return "Error: Story generation service is not available."
result = ARXIV_CLIENT.predict(
prompt,
model_choice,
True,
api_name="/ask_llm"
)
return result
except Exception as e:
return f"Error generating story: {str(e)}"
def generate_image_from_text(text_prompt):
"""Generate an image from text description"""
try:
if IMAGE_CLIENT is None:
return None
result = IMAGE_CLIENT.predict(
text_prompt,
api_name="/predict" # Updated API endpoint for the public demo
)
return result
except Exception as e:
print(f"Error generating image: {str(e)}")
return None
def create_video_from_images(image_paths, durations):
"""Create video from a series of images"""
try:
if not image_paths:
return None
clips = [ImageClip(img_path).set_duration(dur) for img_path, dur in zip(image_paths, durations) if os.path.exists(img_path)]
if not clips:
return None
final_clip = concatenate_videoclips(clips, method="compose")
output_path = tempfile.mktemp(suffix=".mp4")
final_clip.write_videofile(output_path, fps=24)
return output_path
except Exception as e:
print(f"Error creating video: {str(e)}")
return None
def process_story(story_text, num_scenes=5):
"""Break story into scenes for visualization"""
if not story_text:
return []
sentences = story_text.split('.')
scenes = []
scene_length = max(1, len(sentences) // num_scenes)
for i in range(0, len(sentences), scene_length):
scene = '. '.join(sentences[i:i+scene_length]).strip()
if scene:
scenes.append(scene)
return scenes[:num_scenes]
def story_generator_interface(prompt, genre, structure, model_choice, num_scenes, words_per_scene):
"""Main story generation and multimedia creation function"""
try:
# Generate expanded prompt
story_prompt = generate_story_prompt(prompt, genre, structure)
# Generate story
story = generate_story(story_prompt, model_choice)
if story.startswith("Error"):
return story, None, None, None
# Process story into scenes
scenes = process_story(story, num_scenes)
# Generate images for each scene
image_paths = []
for scene in scenes:
image = generate_image_from_text(scene)
if image is not None:
if isinstance(image, (str, bytes)):
image_paths.append(image)
else:
temp_path = tempfile.mktemp(suffix=".png")
Image.fromarray(image).save(temp_path)
image_paths.append(temp_path)
# Generate speech
audio_path = asyncio.run(generate_speech(story))
# Create video if we have images
if image_paths:
scene_durations = [5.0] * len(image_paths) # 5 seconds per scene
video_path = create_video_from_images(image_paths, scene_durations)
else:
video_path = None
return story, image_paths, audio_path, video_path
except Exception as e:
error_msg = f"An error occurred: {str(e)}"
return error_msg, None, None, None
# Create Gradio interface
with gr.Blocks(title="AI Story Generator & Visualizer") as demo:
gr.Markdown("# ๐ญ AI Story Generator & Visualizer")
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(
label="Story Concept",
placeholder="Enter your story idea...",
lines=3
)
genre_input = gr.Dropdown(
label="Genre",
choices=STORY_GENRES,
value="Fantasy"
)
structure_input = gr.Dropdown(
label="Story Structure",
choices=list(STORY_STRUCTURES.keys()),
value="Three Act"
)
model_choice = gr.Dropdown(
label="Model",
choices=["mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.2"],
value="mistralai/Mixtral-8x7B-Instruct-v0.1"
)
num_scenes = gr.Slider(
label="Number of Scenes",
minimum=3,
maximum=7,
value=5,
step=1
)
words_per_scene = gr.Slider(
label="Words per Scene",
minimum=20,
maximum=100,
value=50,
step=10
)
generate_btn = gr.Button("Generate Story & Media")
with gr.Row():
with gr.Column():
story_output = gr.Textbox(
label="Generated Story",
lines=10,
readonly=True
)
with gr.Column():
gallery = gr.Gallery(label="Scene Visualizations")
with gr.Row():
audio_output = gr.Audio(label="Story Narration")
video_output = gr.Video(label="Story Video")
generate_btn.click(
fn=story_generator_interface,
inputs=[prompt_input, genre_input, structure_input, model_choice, num_scenes, words_per_scene],
outputs=[story_output, gallery, audio_output, video_output]
)
if __name__ == "__main__":
demo.launch(reload=True) |