awacke1's picture
Update app.py
003b1ad verified
raw
history blame
10.5 kB
import gradio as gr
import random
from datetime import datetime
import tempfile
import os
import edge_tts
import asyncio
import warnings
import pytz
import re
import json
import pandas as pd
from pathlib import Path
from gradio_client import Client
warnings.filterwarnings('ignore')
# Initialize constants
PAGE_SIZE = 10
FILE_DIR_PATH = "gallery"
# Initialize story starters
STORY_STARTERS = [
['Adventure', 'In a hidden temple deep in the Amazon...'],
['Mystery', 'The detective found an unusual note...'],
['Romance', 'Two strangers meet on a rainy evening...'],
['Sci-Fi', 'The space station received an unexpected signal...'],
['Fantasy', 'A magical portal appeared in the garden...'],
['Comedy-Sitcom', 'The new roommate arrived with seven emotional support animals...'],
['Comedy-Workplace', 'The office printer started sending mysterious messages...'],
['Comedy-Family', 'Grandma decided to become a social media influencer...'],
['Comedy-Supernatural', 'The ghost haunting the house was absolutely terrible at scaring people...'],
['Comedy-Travel', 'The GPS insisted on giving directions in interpretive dance descriptions...']
]
# Initialize client outside of interface definition
arxiv_client = None
def init_client():
global arxiv_client
if arxiv_client is None:
arxiv_client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
return arxiv_client
def save_story(story, audio_path):
"""Save story and audio to gallery"""
try:
# Create gallery directory if it doesn't exist
gallery_dir = Path(FILE_DIR_PATH)
gallery_dir.mkdir(exist_ok=True)
# Generate timestamp for unique filename
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
# Get first line for title
first_line = story.split('\n')[0].strip()
safe_name = re.sub(r'[^\w\s-]', '', first_line)[:50]
# Save story text as markdown
story_path = gallery_dir / f"story_{timestamp}_{safe_name}.md"
with open(story_path, "w") as f:
f.write(f"# {first_line}\n\n{story}")
# Copy audio file to gallery
new_audio_path = None
if audio_path:
new_audio_path = gallery_dir / f"audio_{timestamp}_{safe_name}.mp3"
os.system(f"cp {audio_path} {str(new_audio_path)}")
return str(story_path), str(new_audio_path) if new_audio_path else None
except Exception as e:
print(f"Error saving to gallery: {str(e)}")
return None, None
def list_all_outputs(generation_history):
"""Load all story generations for community view"""
try:
directory_path = FILE_DIR_PATH
if not os.path.exists(directory_path):
return "", gr.update(visible=True)
# Get all matched pairs of story/audio files
file_pairs = []
for story_file in Path(directory_path).glob("story_*.md"):
timestamp = story_file.stem.split('_')[1]
audio_pattern = f"audio_{timestamp}_*.mp3"
audio_files = list(Path(directory_path).glob(audio_pattern))
if audio_files: # Only include if we have both story and audio
file_pairs.append((story_file, audio_files[0]))
# Sort by modification time, newest first
file_pairs.sort(key=lambda x: os.path.getmtime(x[0]), reverse=True)
history_list = generation_history.split(',') if generation_history else []
updated_files = [str(audio) for _, audio in file_pairs if str(audio) not in history_list]
updated_history = updated_files + history_list
return ','.join(updated_history), gr.update(visible=True)
except Exception as e:
print(f"Error loading community generations: {str(e)}")
return "", gr.update(visible=True)
def increase_list_size(list_size):
"""Increase the number of visible community generations"""
return list_size + PAGE_SIZE
def generate_story(prompt, model_choice):
"""Generate story using specified model"""
try:
client = init_client()
if client is None:
return "Error: Story generation service is not available."
result = client.predict(
prompt=prompt,
llm_model_picked=model_choice,
stream_outputs=True,
api_name="/ask_llm"
)
return result
except Exception as e:
return f"Error generating story: {str(e)}"
async def generate_speech(text, voice="en-US-AriaNeural"):
"""Generate speech from text"""
try:
communicate = edge_tts.Communicate(text, voice)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path
except Exception as e:
print(f"Error in text2speech: {str(e)}")
return None
def process_story_and_audio(prompt, model_choice):
"""Process story, generate audio, and save to gallery"""
try:
# Generate story
story = generate_story(prompt, model_choice)
if isinstance(story, str) and story.startswith("Error"):
return story, None
# Generate audio
audio_path = asyncio.run(generate_speech(story))
# Save to gallery
story_path, saved_audio_path = save_story(story, audio_path)
return story, audio_path
except Exception as e:
return f"Error: {str(e)}", None
# Add CSS for community generations
css = '''
#live_gen:before {
content: '';
animation: svelte-z7cif2-pulseStart 1s cubic-bezier(.4,0,.6,1), svelte-z7cif2-pulse 2s cubic-bezier(.4,0,.6,1) 1s infinite;
border: 2px solid var(--color-accent);
background: transparent;
z-index: var(--layer-1);
pointer-events: none;
position: absolute;
height: 100%;
width: 100%;
border-radius: 7px;
}
#live_gen_items{
max-height: 570px;
overflow-y: scroll;
}
'''
# Create the Gradio interface
with gr.Blocks(title="AI Story Generator", css=css) as demo:
gr.Markdown("""
# 🎭 AI Story Generator & Narrator
Generate creative stories, listen to them, and build your gallery!
""")
# Add hidden state for community generations
generation_history = gr.Textbox(visible=False)
list_size = gr.Number(value=PAGE_SIZE, visible=False)
with gr.Row():
with gr.Column(scale=3):
with gr.Row():
prompt_input = gr.Textbox(
label="Story Concept",
placeholder="Enter your story idea...",
lines=3
)
with gr.Row():
model_choice = gr.Dropdown(
label="Model",
choices=[
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-7B-Instruct-v0.2"
],
value="mistralai/Mixtral-8x7B-Instruct-v0.1"
)
generate_btn = gr.Button("Generate Story")
with gr.Row():
story_output = gr.Textbox(
label="Generated Story",
lines=10,
interactive=False
)
with gr.Row():
audio_output = gr.Audio(
label="Story Narration",
type="filepath"
)
# Sidebar with Story Starters and Community Generations
with gr.Column(scale=1):
gr.Markdown("### πŸ“š Story Starters")
story_starters = gr.Dataframe(
value=STORY_STARTERS,
headers=["Category", "Starter"],
interactive=False
)
# Community Generations section
with gr.Column(elem_id="live_gen") as community_list:
gr.Markdown("### 🎬 Community Stories")
with gr.Column(elem_id="live_gen_items"):
@gr.render(inputs=[generation_history, list_size])
def show_output_list(generation_history, list_size):
history_list = generation_history.split(',') if generation_history else []
history_list_latest = history_list[:list_size]
for audio_path in history_list_latest:
if not audio_path or not os.path.exists(audio_path):
continue
try:
# Get corresponding story file
story_path = audio_path.replace('audio_', 'story_').replace('.mp3', '.md')
if not os.path.exists(story_path):
continue
# Read story content
with open(story_path, 'r') as file:
story_content = file.read()
# Extract title from markdown
title = story_content.split('\n')[0].replace('# ', '')
with gr.Group():
gr.Markdown(value=f"### {title}")
gr.Audio(value=audio_path)
except Exception as e:
print(f"Error showing generation: {str(e)}")
continue
load_more = gr.Button("Load More Stories")
load_more.click(fn=increase_list_size, inputs=list_size, outputs=list_size)
# Event handlers
def update_prompt(evt: gr.SelectData):
return STORY_STARTERS[evt.index[0]][1]
story_starters.select(update_prompt, None, prompt_input)
generate_btn.click(
fn=process_story_and_audio,
inputs=[prompt_input, model_choice],
outputs=[story_output, audio_output]
)
# Auto-refresh for community generations
demo.load(fn=list_all_outputs, inputs=generation_history, outputs=[generation_history, community_list], every=2)
if __name__ == "__main__":
demo.launch()