awacke1's picture
Update app.py
fef6f0f verified
raw
history blame
6.84 kB
import gradio as gr
import random
import time
from datetime import datetime
import tempfile
import os
from moviepy.editor import ImageClip, concatenate_videoclips
from gradio_client import Client
from PIL import Image
import edge_tts
import asyncio
import warnings
import numpy as np
warnings.filterwarnings('ignore')
# Initialize the Gradio client for model access
client = Client("stabilityai/stable-diffusion-xl-base-1.0")
arxiv_client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
STORY_GENRES = [
"Science Fiction",
"Fantasy",
"Mystery",
"Romance",
"Horror",
"Adventure",
"Historical Fiction",
"Comedy"
]
STORY_STRUCTURES = {
"Three Act": "Setup (Introduction, Inciting Incident) -> Confrontation (Rising Action, Climax) -> Resolution (Falling Action, Conclusion)",
"Hero's Journey": "Ordinary World -> Call to Adventure -> Trials -> Transformation -> Return",
"Five Act": "Exposition -> Rising Action -> Climax -> Falling Action -> Resolution",
"Seven Point": "Hook -> Plot Turn 1 -> Pinch Point 1 -> Midpoint -> Pinch Point 2 -> Plot Turn 2 -> Resolution"
}
async def generate_speech(text, voice="en-US-AriaNeural"):
"""Generate speech from text using edge-tts"""
try:
communicate = edge_tts.Communicate(text, voice)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path
except Exception as e:
print(f"Error in text2speech: {str(e)}")
raise
def generate_story_prompt(base_prompt, genre, structure):
"""Generate an expanded story prompt based on genre and structure"""
prompt = f"""Create a {genre} story using this concept: '{base_prompt}'
Follow this structure: {STORY_STRUCTURES[structure]}
Include vivid descriptions and sensory details.
Make it engaging and suitable for visualization.
Keep each scene description clear and detailed enough for image generation.
Limit the story to 5-7 key scenes.
"""
return prompt
def generate_story(prompt, model_choice):
"""Generate story using specified model"""
try:
result = arxiv_client.predict(
prompt,
model_choice,
True,
api_name="/ask_llm"
)
return result
except Exception as e:
return f"Error generating story: {str(e)}"
def generate_image_from_text(text_prompt):
"""Generate an image from text description"""
try:
result = client.predict(
text_prompt,
num_inference_steps=30,
guidance_scale=7.5,
width=768,
height=512,
api_name="/text2image"
)
return result
except Exception as e:
return None
def create_video_from_images(image_paths, durations):
"""Create video from a series of images"""
clips = [ImageClip(img_path).set_duration(dur) for img_path, dur in zip(image_paths, durations)]
final_clip = concatenate_videoclips(clips, method="compose")
output_path = tempfile.mktemp(suffix=".mp4")
final_clip.write_videofile(output_path, fps=24)
return output_path
def process_story(story_text, num_scenes=5):
"""Break story into scenes for visualization"""
sentences = story_text.split('.')
scenes = []
scene_length = max(1, len(sentences) // num_scenes)
for i in range(0, len(sentences), scene_length):
scene = '. '.join(sentences[i:i+scene_length]).strip()
if scene:
scenes.append(scene)
return scenes[:num_scenes]
def story_generator_interface(prompt, genre, structure, model_choice, num_scenes, words_per_scene):
"""Main story generation and multimedia creation function"""
# Generate expanded prompt
story_prompt = generate_story_prompt(prompt, genre, structure)
# Generate story
story = generate_story(story_prompt, model_choice)
# Process story into scenes
scenes = process_story(story, num_scenes)
# Generate images for each scene
image_paths = []
for scene in scenes:
image = generate_image_from_text(scene)
if image is not None:
temp_path = tempfile.mktemp(suffix=".png")
Image.fromarray(image).save(temp_path)
image_paths.append(temp_path)
# Generate speech
audio_path = asyncio.run(generate_speech(story))
# Create video
scene_durations = [5.0] * len(image_paths) # 5 seconds per scene
video_path = create_video_from_images(image_paths, scene_durations)
return story, image_paths, audio_path, video_path
# Create Gradio interface
with gr.Blocks(title="AI Story Generator & Visualizer") as demo:
gr.Markdown("# ๐ŸŽญ AI Story Generator & Visualizer")
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(
label="Story Concept",
placeholder="Enter your story idea...",
lines=3
)
genre_input = gr.Dropdown(
label="Genre",
choices=STORY_GENRES,
value="Fantasy"
)
structure_input = gr.Dropdown(
label="Story Structure",
choices=list(STORY_STRUCTURES.keys()),
value="Three Act"
)
model_choice = gr.Dropdown(
label="Model",
choices=["mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.2"],
value="mistralai/Mixtral-8x7B-Instruct-v0.1"
)
num_scenes = gr.Slider(
label="Number of Scenes",
minimum=3,
maximum=7,
value=5,
step=1
)
words_per_scene = gr.Slider(
label="Words per Scene",
minimum=20,
maximum=100,
value=50,
step=10
)
generate_btn = gr.Button("Generate Story & Media")
with gr.Row():
with gr.Column():
story_output = gr.Textbox(
label="Generated Story",
lines=10,
readonly=True
)
with gr.Column():
gallery = gr.Gallery(label="Scene Visualizations")
with gr.Row():
audio_output = gr.Audio(label="Story Narration")
video_output = gr.Video(label="Story Video")
generate_btn.click(
fn=story_generator_interface,
inputs=[prompt_input, genre_input, structure_input, model_choice, num_scenes, words_per_scene],
outputs=[story_output, gallery, audio_output, video_output]
)
if __name__ == "__main__":
demo.launch(reload=True)