File size: 12,194 Bytes
4451326
 
 
 
 
d8b9f2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4451326
 
 
d8b9f2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4451326
d8b9f2a
4451326
 
4ce11e4
4451326
 
 
 
 
 
 
 
 
 
 
4ce11e4
4451326
 
 
 
 
4ce11e4
4451326
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ce11e4
4451326
 
 
 
 
 
 
 
4ce11e4
 
4451326
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8b9f2a
 
 
 
 
 
 
 
 
 
 
 
 
 
4451326
 
 
d8b9f2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ce11e4
d8b9f2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ce11e4
d8b9f2a
 
 
 
 
 
 
4ce11e4
d8b9f2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68cbcae
d8b9f2a
 
 
 
4451326
68cbcae
d8b9f2a
 
 
 
 
 
 
 
 
 
 
 
 
68cbcae
4451326
d8b9f2a
 
 
 
4451326
 
 
 
 
 
 
 
d8b9f2a
 
 
 
 
4ce11e4
d8b9f2a
 
4451326
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import gradio as gr
import os 
import json 
import requests


#Chatbot2
from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration
import torch
from datasets import load_dataset
# PersistDataset -----
import os
import csv
from gradio import inputs, outputs
import huggingface_hub
from huggingface_hub import Repository, hf_hub_download, upload_file
from datetime import datetime
import fastapi
from typing import List, Dict
import httpx
import pandas as pd
import datasets as ds

#Chatbot2 constants
title = """<h1 align="center">💬ChatGPT ChatBack🧠💾</h1>"""
#description = """Chatbot With persistent memory dataset allowing multiagent system AI to access a shared dataset as memory pool with stored interactions.  """
UseMemory=True
HF_TOKEN=os.environ.get("HF_TOKEN")

#ChatGPT info
API_URL = "https://api.openai.com/v1/chat/completions" #os.getenv("API_URL") + "/generate_stream"
OPENAI_API_KEY= os.environ["HF_TOKEN"] # Add a token to this space .  Then copy it to the repository secret in this spaces settings panel.  os.environ reads from there.
# Keys for Open AI ChatGPT API usage are created from here: https://platform.openai.com/account/api-keys
description = """

Chatbot With persistent memory dataset allowing multiagent system AI to access a shared dataset as memory pool with stored interactions. 


## ChatGPT Datasets 📚
- WebText
- Common Crawl
- BooksCorpus
- English Wikipedia
- Toronto Books Corpus
- OpenWebText

## ChatGPT Datasets - Details 📚
- **WebText:** A dataset of web pages crawled from domains on the Alexa top 5,000 list. This dataset was used to pretrain GPT-2.
  - [WebText: A Large-Scale Unsupervised Text Corpus by Radford et al.](https://paperswithcode.com/dataset/webtext)
- **Common Crawl:** A dataset of web pages from a variety of domains, which is updated regularly. This dataset was used to pretrain GPT-3.
  - [Language Models are Few-Shot Learners](https://paperswithcode.com/dataset/common-crawl) by Brown et al.
- **BooksCorpus:** A dataset of over 11,000 books from a variety of genres.
  - [Scalable Methods for 8 Billion Token Language Modeling](https://paperswithcode.com/dataset/bookcorpus) by Zhu et al.
- **English Wikipedia:** A dump of the English-language Wikipedia as of 2018, with articles from 2001-2017.
  - [Improving Language Understanding by Generative Pre-Training](https://huggingface.co/spaces/awacke1/WikipediaUltimateAISearch?logs=build) Space for Wikipedia Search
- **Toronto Books Corpus:** A dataset of over 7,000 books from a variety of genres, collected by the University of Toronto.
  - [Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond](https://paperswithcode.com/dataset/bookcorpus) by Schwenk and Douze.
- **OpenWebText:** A dataset of web pages that were filtered to remove content that was likely to be low-quality or spammy. This dataset was used to pretrain GPT-3.
  - [Language Models are Few-Shot Learners](https://paperswithcode.com/dataset/openwebtext) by Brown et al.
"""

#ChatGPT predict
def predict(inputs, top_p, temperature, chat_counter, chatbot=[], history=[]):  #repetition_penalty, top_k

    # 1. Set up a payload
    payload = {
    "model": "gpt-3.5-turbo",
    "messages": [{"role": "user", "content": f"{inputs}"}],
    "temperature" : 1.0,
    "top_p":1.0,
    "n" : 1,
    "stream": True,
    "presence_penalty":0,
    "frequency_penalty":0,
    }

    # 2. Define your headers and add a key from https://platform.openai.com/account/api-keys
    headers = {
    "Content-Type": "application/json",
    "Authorization": f"Bearer {OPENAI_API_KEY}"
    }

    # 3. Create a chat counter loop that feeds [Predict next best anything based on last input and attention with memory defined by introspective attention over time]
    print(f"chat_counter - {chat_counter}")
    if chat_counter != 0 :
        messages=[]
        for data in chatbot:
          temp1 = {}
          temp1["role"] = "user" 
          temp1["content"] = data[0] 
          temp2 = {}
          temp2["role"] = "assistant" 
          temp2["content"] = data[1]
          messages.append(temp1)
          messages.append(temp2)
        temp3 = {}
        temp3["role"] = "user" 
        temp3["content"] = inputs
        messages.append(temp3)
        #messages
        payload = {
        "model": "gpt-3.5-turbo",
        "messages": messages, #[{"role": "user", "content": f"{inputs}"}],
        "temperature" : temperature, #1.0,
        "top_p": top_p, #1.0,
        "n" : 1,
        "stream": True,
        "presence_penalty":0,
        "frequency_penalty":0,
        }
    chat_counter+=1

    # 4. POST it to OPENAI API
    history.append(inputs)
    print(f"payload is - {payload}")
    # make a POST request to the API endpoint using the requests.post method, passing in stream=True
    response = requests.post(API_URL, headers=headers, json=payload, stream=True)
    #response = requests.post(API_URL, headers=headers, json=payload, stream=True)
    token_counter = 0 
    partial_words = "" 

    # 5. Iterate through response lines and structure readable response
    # TODO - make this parse out markdown so we can have similar interface
    counter=0
    for chunk in response.iter_lines():
        #Skipping first chunk
        if counter == 0:
          counter+=1
          continue
        #counter+=1
        # check whether each line is non-empty
        if chunk.decode() :
          chunk = chunk.decode()
          # decode each line as response data is in bytes
          if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']:
              #if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0:
              #  break
              partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"]
              if token_counter == 0:
                history.append(" " + partial_words)
              else:
                history[-1] = partial_words
              chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ]  # convert to tuples of list
              token_counter+=1
              yield chat, history, chat_counter  # resembles {chatbot: chat, state: history}  

def take_last_tokens(inputs, note_history, history):
    if inputs['input_ids'].shape[1] > 128:
        inputs['input_ids'] = torch.tensor([inputs['input_ids'][0][-128:].tolist()])
        inputs['attention_mask'] = torch.tensor([inputs['attention_mask'][0][-128:].tolist()])
        note_history = ['</s> <s>'.join(note_history[0].split('</s> <s>')[2:])]
        history = history[1:]
    return inputs, note_history, history
    
def add_note_to_history(note, note_history):# good example of non async since we wait around til we know it went okay.
    note_history.append(note)
    note_history = '</s> <s>'.join(note_history)
    return [note_history]  
        
# ChatGPT clear
def reset_textbox():
    return gr.update(value='')

#Chatbot2 Save Results
def SaveResult(text, outputfileName):
    basedir = os.path.dirname(__file__)
    savePath = outputfileName
    print("Saving: " + text + " to " + savePath)
    from os.path import exists
    file_exists = exists(savePath)
    if file_exists:
        with open(outputfileName, "a") as f: #append
            f.write(str(text.replace("\n","  ")))
            f.write('\n')
    else:
        with open(outputfileName, "w") as f: #write
            f.write(str("time, message, text\n")) # one time only to get column headers for CSV file
            f.write(str(text.replace("\n","  ")))
            f.write('\n')
    return

#Chatbot2 Store Message
def store_message(name: str, message: str, outputfileName: str):
    basedir = os.path.dirname(__file__)
    savePath = outputfileName
    
    # if file doesnt exist, create it with labels
    from os.path import exists
    file_exists = exists(savePath)
    
    if (file_exists==False):
        with open(savePath, "w") as f: #write
            f.write(str("time, message, text\n")) # one time only to get column headers for CSV file
            if name and message:
                writer = csv.DictWriter(f, fieldnames=["time", "message", "name"])
                writer.writerow(
                    {"time": str(datetime.now()), "message": message.strip(), "name": name.strip()  }
                )
        df = pd.read_csv(savePath)
        df = df.sort_values(df.columns[0],ascending=False)
    else:
        if name and message:
            with open(savePath, "a") as csvfile:
                writer = csv.DictWriter(csvfile, fieldnames=[ "time", "message", "name", ])
                writer.writerow(
                    {"time": str(datetime.now()), "message": message.strip(), "name": name.strip()  }
                )
        df = pd.read_csv(savePath)
        df = df.sort_values(df.columns[0],ascending=False)
    return df

#Chatbot2 get base directory of saves
def get_base(filename): 
        basedir = os.path.dirname(__file__)
        print(basedir)
        loadPath = basedir + filename 
        print(loadPath)
        return loadPath

#Chatbot2 - History
def chat(message, history):
    history = history or []
    if history: 
        history_useful = ['</s> <s>'.join([str(a[0])+'</s> <s>'+str(a[1]) for a in history])]
    else:
        history_useful = []
    history_useful = add_note_to_history(message, history_useful)
    inputs = tokenizer(history_useful, return_tensors="pt")
    inputs, history_useful, history = take_last_tokens(inputs, history_useful, history)
    reply_ids = model.generate(**inputs)
    response = tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0]
    history_useful = add_note_to_history(response, history_useful)
    list_history = history_useful[0].split('</s> <s>')
    history.append((list_history[-2], list_history[-1]))  
    df=pd.DataFrame()
    if UseMemory: 
        outputfileName = 'ChatbotMemory3.csv' # Test first time file create
        df = store_message(message, response, outputfileName) # Save to dataset
        basedir = get_base(outputfileName)
    return history, df, basedir


# 6. Use Gradio to pull it all together
with gr.Blocks(css = """#col_container {width: 1000px; margin-left: auto; margin-right: auto;}   #chatbot {height: 520px; overflow: auto;}""") as demo:
                   
    gr.HTML(title)

    # Chat bot memory - dataframe
    gr.Markdown("<h1><center>🍰Gradio chatbot backed by dataframe CSV memory🎨</center></h1>")
    with gr.Row():
       t1 = gr.Textbox(lines=1, default="", label="Chat Text:")
       b1 = gr.Button("🍰 Respond and Retrieve Messages")
    with gr.Row(): # inputs and buttons
       s1 = gr.State([])
       df1 = gr.Dataframe(wrap=True, max_rows=1000, overflow_row_behaviour= "paginate")
    with gr.Row(): # inputs and buttons
       file = gr.File(label="File")
       s2 = gr.Markdown()
    b1.click(fn=chat, inputs=[t1, s1], outputs=[s1, df1, file]) 

                    
    with gr.Column(elem_id = "col_container"):
        chatbot = gr.Chatbot(elem_id='chatbot')
        inputs = gr.Textbox(placeholder= "There is only one real true reward in life and this is existence or nonexistence.  Everything else is a corollary.", label= "Type an input and press Enter") #t
        state = gr.State([]) 
        gpt = gr.Button()
    
        with gr.Accordion("Parameters", open=False):
            top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",)
            temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",)
            chat_counter = gr.Number(value=0, visible=False, precision=0)

    inputs.submit( predict, [inputs, top_p, temperature,chat_counter, chatbot, state], [chatbot, state, chat_counter],)
                    
    gpt.click(predict, [inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter],)
    gpt.click(reset_textbox, [], [inputs])                  
    inputs.submit(reset_textbox, [], [inputs])

    # Show ChatGPT Datasets information
    gr.Markdown(description)

    # Kickoff
    demo.queue().launch(debug=True)