Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import json | |
import requests | |
#Chatbot2 | |
from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration | |
import torch | |
from datasets import load_dataset | |
# PersistDataset ----- | |
import os | |
import csv | |
from gradio import inputs, outputs | |
import huggingface_hub | |
from huggingface_hub import Repository, hf_hub_download, upload_file | |
from datetime import datetime | |
import fastapi | |
from typing import List, Dict | |
import httpx | |
import pandas as pd | |
import datasets as ds | |
#Chatbot2 constants | |
title = """<h1 align="center">💬ChatGPT ChatBack🧠💾</h1>""" | |
#description = """Chatbot With persistent memory dataset allowing multiagent system AI to access a shared dataset as memory pool with stored interactions. """ | |
UseMemory=True | |
HF_TOKEN=os.environ.get("HF_TOKEN") | |
#ChatGPT info | |
API_URL = "https://api.openai.com/v1/chat/completions" #os.getenv("API_URL") + "/generate_stream" | |
OPENAI_API_KEY= os.environ["HF_TOKEN"] # Add a token to this space . Then copy it to the repository secret in this spaces settings panel. os.environ reads from there. | |
# Keys for Open AI ChatGPT API usage are created from here: https://platform.openai.com/account/api-keys | |
description = """ | |
Chatbot With persistent memory dataset allowing multiagent system AI to access a shared dataset as memory pool with stored interactions. | |
## ChatGPT Datasets 📚 | |
- WebText | |
- Common Crawl | |
- BooksCorpus | |
- English Wikipedia | |
- Toronto Books Corpus | |
- OpenWebText | |
## ChatGPT Datasets - Details 📚 | |
- **WebText:** A dataset of web pages crawled from domains on the Alexa top 5,000 list. This dataset was used to pretrain GPT-2. | |
- [WebText: A Large-Scale Unsupervised Text Corpus by Radford et al.](https://paperswithcode.com/dataset/webtext) | |
- **Common Crawl:** A dataset of web pages from a variety of domains, which is updated regularly. This dataset was used to pretrain GPT-3. | |
- [Language Models are Few-Shot Learners](https://paperswithcode.com/dataset/common-crawl) by Brown et al. | |
- **BooksCorpus:** A dataset of over 11,000 books from a variety of genres. | |
- [Scalable Methods for 8 Billion Token Language Modeling](https://paperswithcode.com/dataset/bookcorpus) by Zhu et al. | |
- **English Wikipedia:** A dump of the English-language Wikipedia as of 2018, with articles from 2001-2017. | |
- [Improving Language Understanding by Generative Pre-Training](https://huggingface.co/spaces/awacke1/WikipediaUltimateAISearch?logs=build) Space for Wikipedia Search | |
- **Toronto Books Corpus:** A dataset of over 7,000 books from a variety of genres, collected by the University of Toronto. | |
- [Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond](https://paperswithcode.com/dataset/bookcorpus) by Schwenk and Douze. | |
- **OpenWebText:** A dataset of web pages that were filtered to remove content that was likely to be low-quality or spammy. This dataset was used to pretrain GPT-3. | |
- [Language Models are Few-Shot Learners](https://paperswithcode.com/dataset/openwebtext) by Brown et al. | |
""" | |
#ChatGPT predict | |
def predict(inputs, top_p, temperature, chat_counter, chatbot=[], history=[]): #repetition_penalty, top_k | |
# 1. Set up a payload | |
payload = { | |
"model": "gpt-3.5-turbo", | |
"messages": [{"role": "user", "content": f"{inputs}"}], | |
"temperature" : 1.0, | |
"top_p":1.0, | |
"n" : 1, | |
"stream": True, | |
"presence_penalty":0, | |
"frequency_penalty":0, | |
} | |
# 2. Define your headers and add a key from https://platform.openai.com/account/api-keys | |
headers = { | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {OPENAI_API_KEY}" | |
} | |
# 3. Create a chat counter loop that feeds [Predict next best anything based on last input and attention with memory defined by introspective attention over time] | |
print(f"chat_counter - {chat_counter}") | |
if chat_counter != 0 : | |
messages=[] | |
for data in chatbot: | |
temp1 = {} | |
temp1["role"] = "user" | |
temp1["content"] = data[0] | |
temp2 = {} | |
temp2["role"] = "assistant" | |
temp2["content"] = data[1] | |
messages.append(temp1) | |
messages.append(temp2) | |
temp3 = {} | |
temp3["role"] = "user" | |
temp3["content"] = inputs | |
messages.append(temp3) | |
#messages | |
payload = { | |
"model": "gpt-3.5-turbo", | |
"messages": messages, #[{"role": "user", "content": f"{inputs}"}], | |
"temperature" : temperature, #1.0, | |
"top_p": top_p, #1.0, | |
"n" : 1, | |
"stream": True, | |
"presence_penalty":0, | |
"frequency_penalty":0, | |
} | |
chat_counter+=1 | |
# 4. POST it to OPENAI API | |
history.append(inputs) | |
print(f"payload is - {payload}") | |
# make a POST request to the API endpoint using the requests.post method, passing in stream=True | |
response = requests.post(API_URL, headers=headers, json=payload, stream=True) | |
#response = requests.post(API_URL, headers=headers, json=payload, stream=True) | |
token_counter = 0 | |
partial_words = "" | |
# 5. Iterate through response lines and structure readable response | |
# TODO - make this parse out markdown so we can have similar interface | |
counter=0 | |
for chunk in response.iter_lines(): | |
#Skipping first chunk | |
if counter == 0: | |
counter+=1 | |
continue | |
#counter+=1 | |
# check whether each line is non-empty | |
if chunk.decode() : | |
chunk = chunk.decode() | |
# decode each line as response data is in bytes | |
if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']: | |
#if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0: | |
# break | |
partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"] | |
if token_counter == 0: | |
history.append(" " + partial_words) | |
else: | |
history[-1] = partial_words | |
chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] # convert to tuples of list | |
token_counter+=1 | |
yield chat, history, chat_counter # resembles {chatbot: chat, state: history} | |
def take_last_tokens(inputs, note_history, history): | |
if inputs['input_ids'].shape[1] > 128: | |
inputs['input_ids'] = torch.tensor([inputs['input_ids'][0][-128:].tolist()]) | |
inputs['attention_mask'] = torch.tensor([inputs['attention_mask'][0][-128:].tolist()]) | |
note_history = ['</s> <s>'.join(note_history[0].split('</s> <s>')[2:])] | |
history = history[1:] | |
return inputs, note_history, history | |
def add_note_to_history(note, note_history):# good example of non async since we wait around til we know it went okay. | |
note_history.append(note) | |
note_history = '</s> <s>'.join(note_history) | |
return [note_history] | |
# ChatGPT clear | |
def reset_textbox(): | |
return gr.update(value='') | |
#Chatbot2 Save Results | |
def SaveResult(text, outputfileName): | |
basedir = os.path.dirname(__file__) | |
savePath = outputfileName | |
print("Saving: " + text + " to " + savePath) | |
from os.path import exists | |
file_exists = exists(savePath) | |
if file_exists: | |
with open(outputfileName, "a") as f: #append | |
f.write(str(text.replace("\n"," "))) | |
f.write('\n') | |
else: | |
with open(outputfileName, "w") as f: #write | |
f.write(str("time, message, text\n")) # one time only to get column headers for CSV file | |
f.write(str(text.replace("\n"," "))) | |
f.write('\n') | |
return | |
#Chatbot2 Store Message | |
def store_message(name: str, message: str, outputfileName: str): | |
basedir = os.path.dirname(__file__) | |
savePath = outputfileName | |
# if file doesnt exist, create it with labels | |
from os.path import exists | |
file_exists = exists(savePath) | |
if (file_exists==False): | |
with open(savePath, "w") as f: #write | |
f.write(str("time, message, text\n")) # one time only to get column headers for CSV file | |
if name and message: | |
writer = csv.DictWriter(f, fieldnames=["time", "message", "name"]) | |
writer.writerow( | |
{"time": str(datetime.now()), "message": message.strip(), "name": name.strip() } | |
) | |
df = pd.read_csv(savePath) | |
df = df.sort_values(df.columns[0],ascending=False) | |
else: | |
if name and message: | |
with open(savePath, "a") as csvfile: | |
writer = csv.DictWriter(csvfile, fieldnames=[ "time", "message", "name", ]) | |
writer.writerow( | |
{"time": str(datetime.now()), "message": message.strip(), "name": name.strip() } | |
) | |
df = pd.read_csv(savePath) | |
df = df.sort_values(df.columns[0],ascending=False) | |
return df | |
#Chatbot2 get base directory of saves | |
def get_base(filename): | |
basedir = os.path.dirname(__file__) | |
print(basedir) | |
loadPath = basedir + filename | |
print(loadPath) | |
return loadPath | |
#Chatbot2 - History | |
def chat(message, history): | |
history = history or [] | |
if history: | |
history_useful = ['</s> <s>'.join([str(a[0])+'</s> <s>'+str(a[1]) for a in history])] | |
else: | |
history_useful = [] | |
history_useful = add_note_to_history(message, history_useful) | |
inputs = tokenizer(history_useful, return_tensors="pt") | |
inputs, history_useful, history = take_last_tokens(inputs, history_useful, history) | |
reply_ids = model.generate(**inputs) | |
response = tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0] | |
history_useful = add_note_to_history(response, history_useful) | |
list_history = history_useful[0].split('</s> <s>') | |
history.append((list_history[-2], list_history[-1])) | |
df=pd.DataFrame() | |
if UseMemory: | |
outputfileName = 'ChatbotMemory3.csv' # Test first time file create | |
df = store_message(message, response, outputfileName) # Save to dataset | |
basedir = get_base(outputfileName) | |
return history, df, basedir | |
# 6. Use Gradio to pull it all together | |
with gr.Blocks(css = """#col_container {width: 1000px; margin-left: auto; margin-right: auto;} #chatbot {height: 520px; overflow: auto;}""") as demo: | |
gr.HTML(title) | |
# Chat bot memory - dataframe | |
gr.Markdown("<h1><center>🍰Gradio chatbot backed by dataframe CSV memory🎨</center></h1>") | |
with gr.Row(): | |
t1 = gr.Textbox(lines=1, default="", label="Chat Text:") | |
b1 = gr.Button("🍰 Respond and Retrieve Messages") | |
with gr.Row(): # inputs and buttons | |
s1 = gr.State([]) | |
df1 = gr.Dataframe(wrap=True, max_rows=1000, overflow_row_behaviour= "paginate") | |
with gr.Row(): # inputs and buttons | |
file = gr.File(label="File") | |
s2 = gr.Markdown() | |
b1.click(fn=chat, inputs=[t1, s1], outputs=[s1, df1, file]) | |
with gr.Column(elem_id = "col_container"): | |
chatbot = gr.Chatbot(elem_id='chatbot') | |
inputs = gr.Textbox(placeholder= "There is only one real true reward in life and this is existence or nonexistence. Everything else is a corollary.", label= "Type an input and press Enter") #t | |
state = gr.State([]) | |
gpt = gr.Button() | |
with gr.Accordion("Parameters", open=False): | |
top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",) | |
temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",) | |
chat_counter = gr.Number(value=0, visible=False, precision=0) | |
inputs.submit( predict, [inputs, top_p, temperature,chat_counter, chatbot, state], [chatbot, state, chat_counter],) | |
gpt.click(predict, [inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter],) | |
gpt.click(reset_textbox, [], [inputs]) | |
inputs.submit(reset_textbox, [], [inputs]) | |
# Show ChatGPT Datasets information | |
gr.Markdown(description) | |
# Kickoff | |
demo.queue().launch(debug=True) | |