Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -45,7 +45,6 @@ def predict(inputs, top_p, temperature, chat_counter, chatbot=[], history=[]):
|
|
45 |
temp3["role"] = "user"
|
46 |
temp3["content"] = inputs
|
47 |
messages.append(temp3)
|
48 |
-
#messages
|
49 |
payload = {
|
50 |
"model": "gpt-3.5-turbo",
|
51 |
"messages": messages, #[{"role": "user", "content": f"{inputs}"}],
|
@@ -61,28 +60,19 @@ def predict(inputs, top_p, temperature, chat_counter, chatbot=[], history=[]):
|
|
61 |
# 4. POST it to OPENAI API
|
62 |
history.append(inputs)
|
63 |
print(f"payload is - {payload}")
|
64 |
-
# make a POST request to the API endpoint using the requests.post method, passing in stream=True
|
65 |
response = requests.post(API_URL, headers=headers, json=payload, stream=True)
|
66 |
-
#response = requests.post(API_URL, headers=headers, json=payload, stream=True)
|
67 |
token_counter = 0
|
68 |
partial_words = ""
|
69 |
|
70 |
# 5. Iterate through response lines and structure readable response
|
71 |
-
# TODO - make this parse out markdown so we can have similar interface
|
72 |
counter=0
|
73 |
for chunk in response.iter_lines():
|
74 |
-
#Skipping first chunk
|
75 |
if counter == 0:
|
76 |
counter+=1
|
77 |
continue
|
78 |
-
#counter+=1
|
79 |
-
# check whether each line is non-empty
|
80 |
if chunk.decode() :
|
81 |
chunk = chunk.decode()
|
82 |
-
# decode each line as response data is in bytes
|
83 |
if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']:
|
84 |
-
#if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0:
|
85 |
-
# break
|
86 |
partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"]
|
87 |
if token_counter == 0:
|
88 |
history.append(" " + partial_words)
|
@@ -90,7 +80,7 @@ def predict(inputs, top_p, temperature, chat_counter, chatbot=[], history=[]):
|
|
90 |
history[-1] = partial_words
|
91 |
chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] # convert to tuples of list
|
92 |
token_counter+=1
|
93 |
-
yield chat, history, chat_counter
|
94 |
|
95 |
|
96 |
def reset_textbox():
|
@@ -117,33 +107,25 @@ description = """
|
|
117 |
- **Toronto Books Corpus:** A dataset of over 7,000 books from a variety of genres, collected by the University of Toronto.
|
118 |
- [Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond](https://paperswithcode.com/dataset/bookcorpus) by Schwenk and Douze.
|
119 |
- **OpenWebText:** A dataset of web pages that were filtered to remove content that was likely to be low-quality or spammy. This dataset was used to pretrain GPT-3.
|
120 |
-
- [Language Models are Few-Shot Learners](https://paperswithcode.com/dataset/openwebtext) by Brown et al.
|
121 |
-
|
122 |
"""
|
123 |
|
124 |
# 6. Use Gradio to pull it all together
|
125 |
-
with gr.Blocks(css = """#col_container {width: 1000px; margin-left: auto; margin-right: auto;}
|
126 |
-
#chatbot {height: 520px; overflow: auto;}""") as demo:
|
127 |
-
|
128 |
-
|
129 |
gr.HTML(title)
|
130 |
-
|
131 |
-
|
132 |
with gr.Column(elem_id = "col_container"):
|
133 |
chatbot = gr.Chatbot(elem_id='chatbot') #c
|
134 |
inputs = gr.Textbox(placeholder= "Hi there!", label= "Type an input and press Enter") #t
|
135 |
state = gr.State([]) #s
|
136 |
b1 = gr.Button()
|
137 |
-
|
138 |
with gr.Accordion("Parameters", open=False):
|
139 |
top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",)
|
140 |
temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",)
|
141 |
chat_counter = gr.Number(value=0, visible=False, precision=0)
|
142 |
|
143 |
-
inputs.submit(
|
144 |
-
b1.click(
|
145 |
b1.click(reset_textbox, [], [inputs])
|
146 |
inputs.submit(reset_textbox, [], [inputs])
|
147 |
-
|
148 |
gr.Markdown(description)
|
149 |
-
demo.queue().launch(debug=True)
|
|
|
45 |
temp3["role"] = "user"
|
46 |
temp3["content"] = inputs
|
47 |
messages.append(temp3)
|
|
|
48 |
payload = {
|
49 |
"model": "gpt-3.5-turbo",
|
50 |
"messages": messages, #[{"role": "user", "content": f"{inputs}"}],
|
|
|
60 |
# 4. POST it to OPENAI API
|
61 |
history.append(inputs)
|
62 |
print(f"payload is - {payload}")
|
|
|
63 |
response = requests.post(API_URL, headers=headers, json=payload, stream=True)
|
|
|
64 |
token_counter = 0
|
65 |
partial_words = ""
|
66 |
|
67 |
# 5. Iterate through response lines and structure readable response
|
|
|
68 |
counter=0
|
69 |
for chunk in response.iter_lines():
|
|
|
70 |
if counter == 0:
|
71 |
counter+=1
|
72 |
continue
|
|
|
|
|
73 |
if chunk.decode() :
|
74 |
chunk = chunk.decode()
|
|
|
75 |
if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']:
|
|
|
|
|
76 |
partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"]
|
77 |
if token_counter == 0:
|
78 |
history.append(" " + partial_words)
|
|
|
80 |
history[-1] = partial_words
|
81 |
chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] # convert to tuples of list
|
82 |
token_counter+=1
|
83 |
+
yield chat, history, chat_counter
|
84 |
|
85 |
|
86 |
def reset_textbox():
|
|
|
107 |
- **Toronto Books Corpus:** A dataset of over 7,000 books from a variety of genres, collected by the University of Toronto.
|
108 |
- [Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond](https://paperswithcode.com/dataset/bookcorpus) by Schwenk and Douze.
|
109 |
- **OpenWebText:** A dataset of web pages that were filtered to remove content that was likely to be low-quality or spammy. This dataset was used to pretrain GPT-3.
|
110 |
+
- [Language Models are Few-Shot Learners](https://paperswithcode.com/dataset/openwebtext) by Brown et al.
|
|
|
111 |
"""
|
112 |
|
113 |
# 6. Use Gradio to pull it all together
|
114 |
+
with gr.Blocks(css = """#col_container {width: 1000px; margin-left: auto; margin-right: auto;} #chatbot {height: 520px; overflow: auto;}""") as demo:
|
|
|
|
|
|
|
115 |
gr.HTML(title)
|
|
|
|
|
116 |
with gr.Column(elem_id = "col_container"):
|
117 |
chatbot = gr.Chatbot(elem_id='chatbot') #c
|
118 |
inputs = gr.Textbox(placeholder= "Hi there!", label= "Type an input and press Enter") #t
|
119 |
state = gr.State([]) #s
|
120 |
b1 = gr.Button()
|
|
|
121 |
with gr.Accordion("Parameters", open=False):
|
122 |
top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",)
|
123 |
temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",)
|
124 |
chat_counter = gr.Number(value=0, visible=False, precision=0)
|
125 |
|
126 |
+
inputs.submit(predict, [inputs, top_p, temperature,chat_counter, chatbot, state], [chatbot, state, chat_counter],)
|
127 |
+
b1.click(predict, [inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter],)
|
128 |
b1.click(reset_textbox, [], [inputs])
|
129 |
inputs.submit(reset_textbox, [], [inputs])
|
|
|
130 |
gr.Markdown(description)
|
131 |
+
demo.queue().launch(debug=True)
|