File size: 25,310 Bytes
3cbe462
a820539
 
 
 
 
 
 
 
 
3cbe462
a820539
8228332
3cbe462
8228332
3cbe462
 
 
 
 
 
 
 
 
 
 
 
 
8aa93ff
 
8228332
3cbe462
a820539
3cbe462
 
 
 
 
 
 
 
 
a820539
 
 
 
 
 
3cbe462
 
 
 
 
8228332
 
 
a820539
 
 
 
 
 
 
8228332
 
 
 
 
 
 
 
 
 
 
 
3cbe462
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8228332
a820539
3cbe462
a820539
 
3cbe462
a820539
 
 
3cbe462
 
a820539
 
 
 
3cbe462
a820539
3cbe462
 
 
a820539
 
 
 
 
3cbe462
8228332
3cbe462
a820539
3cbe462
 
 
 
 
 
 
8228332
a820539
3cbe462
 
 
 
 
 
a820539
3cbe462
 
 
8228332
a820539
8228332
 
 
 
 
3cbe462
 
a820539
3cbe462
 
a820539
3cbe462
 
8228332
3cbe462
a820539
3cbe462
 
 
a820539
3cbe462
 
 
a820539
3cbe462
 
 
 
 
a820539
 
3cbe462
a820539
 
3cbe462
 
a820539
3cbe462
 
 
a820539
3cbe462
 
 
 
a820539
3cbe462
 
 
 
 
 
 
a820539
3cbe462
a820539
 
3cbe462
 
a820539
 
3cbe462
 
 
 
8228332
a820539
8228332
a820539
 
 
 
8228332
a820539
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8228332
a820539
 
 
 
 
 
 
 
 
 
d4fbf0d
8228332
 
 
 
 
 
 
a820539
 
 
8228332
d4fbf0d
 
8228332
a820539
 
 
 
 
 
 
 
 
 
8228332
a820539
8228332
a820539
 
8228332
 
 
3cbe462
a820539
3cbe462
 
 
 
 
 
 
 
 
 
 
 
 
a820539
3cbe462
 
a820539
3cbe462
 
 
a820539
3cbe462
 
 
a820539
3cbe462
 
 
a820539
3cbe462
 
 
8228332
ec1ca1c
8228332
3cbe462
 
 
8228332
3cbe462
 
 
 
 
 
8228332
 
3cbe462
 
 
a820539
3cbe462
 
 
 
 
 
 
 
a820539
3cbe462
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a820539
3cbe462
 
 
 
 
 
a820539
3cbe462
a820539
3cbe462
 
a820539
3cbe462
 
 
 
 
 
 
 
 
 
8228332
 
 
29b8d1b
8228332
 
 
 
 
3cbe462
 
a820539
8aa93ff
a820539
 
8228332
 
 
 
 
 
 
 
 
a820539
3cbe462
 
29b8d1b
3cbe462
 
a820539
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8228332
 
8aa93ff
8228332
29b8d1b
8228332
a820539
 
 
 
 
 
 
 
3cbe462
8228332
3cbe462
 
 
 
 
 
 
 
a820539
3cbe462
a820539
3cbe462
 
 
a820539
3cbe462
 
 
 
 
 
 
a820539
3cbe462
a820539
 
 
 
3cbe462
a820539
 
3cbe462
 
a820539
3cbe462
29b8d1b
3cbe462
 
 
 
 
a820539
 
3cbe462
 
 
 
a820539
 
 
 
 
 
 
 
 
 
 
 
 
3cbe462
a820539
3cbe462
a820539
3cbe462
 
 
 
 
 
 
 
 
 
 
a820539
 
3cbe462
 
 
 
 
 
 
 
 
 
a820539
3cbe462
a820539
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8228332
3cbe462
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
import streamlit as st
import anthropic
import openai
import base64
import cv2
import glob
import os
import re
import asyncio
import edge_tts
from datetime import datetime
from collections import defaultdict
from dotenv import load_dotenv
from gradio_client import Client
from PIL import Image

# 🎯 1. Core Configuration & Setup
st.set_page_config(
    page_title="🚲BikeAIπŸ† Claude/GPT Research",
    page_icon="πŸš²πŸ†",
    layout="wide",
    initial_sidebar_state="auto",
    menu_items={
        'Get Help': 'https://huggingface.co/awacke1',
        'Report a bug': 'https://huggingface.co/spaces/awacke1',
        'About': "🚲BikeAIπŸ† Claude/GPT Research AI"
    }
)
load_dotenv()

# πŸ”‘ 2. API Setup & Clients
openai_api_key = os.getenv('OPENAI_API_KEY', "")
anthropic_key = os.getenv('ANTHROPIC_API_KEY', "")
if 'OPENAI_API_KEY' in st.secrets:
    openai_api_key = st.secrets['OPENAI_API_KEY']
if 'ANTHROPIC_API_KEY' in st.secrets:
    anthropic_key = st.secrets["ANTHROPIC_API_KEY"]

openai.api_key = openai_api_key
claude_client = anthropic.Anthropic(api_key=anthropic_key)

# πŸ“ 3. Session State Management
if 'parsed_papers' not in st.session_state:
    st.session_state['parsed_papers'] = []
if 'audio_generated' not in st.session_state:
    st.session_state['audio_generated'] = {}
if 'voices' not in st.session_state:
    st.session_state['voices'] = []
if 'viewing_prefix' not in st.session_state:
    st.session_state['viewing_prefix'] = None
if 'should_rerun' not in st.session_state:
    st.session_state['should_rerun'] = False

# 🎨 4. Custom CSS
st.markdown("""
<style>
    .main { 
        background: linear-gradient(to right, #1a1a1a, #2d2d2d); 
        color: #fff; 
    }
    .stMarkdown { 
        font-family: 'Helvetica Neue', sans-serif; 
    }
    .stButton>button {
        margin-right: 0.5rem;
    }
</style>
""", unsafe_allow_html=True)

FILE_EMOJIS = {
    "md": "πŸ“",
    "mp3": "🎡",
}

# 🧠 5. High-Information Content Extraction
def get_high_info_terms(text: str) -> list:
    """Extract high-information terms from text, including key phrases."""
    stop_words = set([
        'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with',
        'by', 'from', 'up', 'about', 'into', 'over', 'after', 'is', 'are', 'was', 'were',
        'be', 'been', 'being', 'have', 'has', 'had', 'do', 'does', 'did', 'will', 'would',
        'should', 'could', 'might', 'must', 'shall', 'can', 'may', 'this', 'that', 'these',
        'those', 'i', 'you', 'he', 'she', 'it', 'we', 'they', 'what', 'which', 'who',
        'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most',
        'other', 'some', 'such', 'than', 'too', 'very', 'just', 'there'
    ])

    key_phrases = [
        'artificial intelligence', 'machine learning', 'deep learning', 'neural network',
        'personal assistant', 'natural language', 'computer vision', 'data science',
        'reinforcement learning', 'knowledge graph', 'semantic search', 'time series',
        'large language model', 'transformer model', 'attention mechanism',
        'autonomous system', 'edge computing', 'quantum computing', 'blockchain technology',
        'cognitive science', 'human computer', 'decision making', 'arxiv search',
        'research paper', 'scientific study', 'empirical analysis'
    ]

    # Identify key phrases
    preserved_phrases = []
    lower_text = text.lower()
    for phrase in key_phrases:
        if phrase in lower_text:
            preserved_phrases.append(phrase)
            text = text.replace(phrase, '')

    # Extract individual words
    words = re.findall(r'\b\w+(?:-\w+)*\b', text)
    high_info_words = [
        word.lower() for word in words 
        if len(word) > 3
        and word.lower() not in stop_words
        and not word.isdigit()
        and any(c.isalpha() for c in word)
    ]

    all_terms = preserved_phrases + high_info_words
    seen = set()
    unique_terms = []
    for term in all_terms:
        if term not in seen:
            seen.add(term)
            unique_terms.append(term)

    max_terms = 5
    return unique_terms[:max_terms]

def clean_text_for_filename(text: str) -> str:
    """Remove punctuation and short filler words, return a compact string."""
    text = text.lower()
    text = re.sub(r'[^\w\s-]', '', text)
    words = text.split()
    stop_short = set(['the','and','for','with','this','that','from','just','very','then','been','only','also','about'])
    filtered = [w for w in words if len(w)>3 and w not in stop_short]
    return '_'.join(filtered)[:200]

# πŸ“ 6. File Operations
def generate_filename(prefix, title, file_type="md"):
    """
    Generate filename with meaningful terms and prefix.
    The filename includes a timestamp and a cleaned title.
    """
    timestamp = datetime.now().strftime("%y%m_%H%M")
    title_cleaned = clean_text_for_filename(title)
    filename = f"{timestamp}_{prefix}_{title_cleaned}.{file_type}"
    return filename

def create_md_file(paper):
    """Create Markdown file for a paper."""
    filename = generate_filename("paper", paper['title'], "md")
    content = f"# {paper['title']}\n\n**Year:** {paper['year'] if paper['year'] else 'Unknown'}\n\n**Summary:**\n{paper['summary']}"
    with open(filename, 'w', encoding='utf-8') as f:
        f.write(content)
    return filename

def get_download_link(file):
    """Generate download link for file."""
    with open(file, "rb") as f_file:
        b64 = base64.b64encode(f_file.read()).decode()
    mime_type = "audio/mpeg" if file.endswith(".mp3") else "text/markdown"
    return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file)}">πŸ“‚ Download {os.path.basename(file)}</a>'

# πŸ”Š 7. Audio Processing
def clean_for_speech(text: str) -> str:
    """Clean text for speech synthesis."""
    text = text.replace("\n", " ")
    text = text.replace("</s>", " ")
    text = text.replace("#", "")
    text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text)
    text = re.sub(r"\s+", " ", text).strip()
    return text

async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0):
    """Generate audio using Edge TTS."""
    text = clean_for_speech(text)
    if not text.strip():
        return None
    rate_str = f"{rate:+d}%"
    pitch_str = f"{pitch:+d}Hz"
    communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str)
    out_fn = generate_filename("audio", text[:50], "mp3")
    await communicate.save(out_fn)
    return out_fn

def speak_with_edge_tts(text, voice, rate=0, pitch=0):
    """Wrapper for Edge TTS generation."""
    try:
        return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch))
    except Exception as e:
        st.error(f"Error generating audio: {e}")
        return None

def play_and_download_audio(file_path):
    """Play and provide download link for audio."""
    if file_path and os.path.exists(file_path):
        st.audio(file_path)
        dl_link = get_download_link(file_path)
        st.markdown(dl_link, unsafe_allow_html=True)

# 🎬 8. Media Processing
def process_image(image_path, user_prompt):
    """Process image with GPT-4V."""
    with open(image_path, "rb") as imgf:
        image_data = imgf.read()
    b64img = base64.b64encode(image_data).decode("utf-8")
    resp = openai.ChatCompletion.create(
        model=st.session_state["openai_model"],
        messages=[
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": f"{user_prompt} Image data: data:image/png;base64,{b64img}"}
        ],
        temperature=0.0,
    )
    return resp.choices[0].message.content

def process_audio_file(audio_path):
    """Process audio with Whisper."""
    with open(audio_path, "rb") as f:
        transcription = openai.Audio.transcribe("whisper-1", f)
    return transcription['text']

def process_video(video_path, seconds_per_frame=1):
    """Extract frames from video."""
    vid = cv2.VideoCapture(video_path)
    total = int(vid.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = vid.get(cv2.CAP_PROP_FPS)
    skip = int(fps * seconds_per_frame)
    frames_b64 = []
    for i in range(0, total, skip):
        vid.set(cv2.CAP_PROP_POS_FRAMES, i)
        ret, frame = vid.read()
        if not ret:
            break
        _, buf = cv2.imencode(".jpg", frame)
        frames_b64.append(base64.b64encode(buf).decode("utf-8"))
    vid.release()
    return frames_b64

def process_video_with_gpt(video_path, prompt):
    """Analyze video frames with GPT-4V."""
    frames = process_video(video_path)
    combined_images = " ".join([f"data:image/jpeg;base64,{fr}" for fr in frames])
    resp = openai.ChatCompletion.create(
        model=st.session_state["openai_model"],
        messages=[
            {"role":"system","content":"Analyze the following video frames."},
            {"role":"user","content": f"{prompt} Frames: {combined_images}"}
        ]
    )
    return resp.choices[0].message.content

# πŸ€– 9. AI Model Integration
def parse_papers(transcript_text: str):
    """
    Parse the transcript text into individual papers.
    Assumes that each paper starts with a number and is enclosed in brackets for the title and year.
    Example:
        1) [Paper Title (2023)] This is the summary...
    """
    papers = []
    # Split based on numbered entries
    paper_blocks = re.split(r'\d+\)\s*\[', transcript_text)
    for block in paper_blocks[1:]:  # Skip the first split as it doesn't contain paper info
        try:
            title_year, summary = block.split(']', 1)
            # Extract title and year using regex
            title_match = re.match(r"(.+?)\s*\((\d{4})\)", title_year)
            if title_match:
                title = title_match.group(1).strip()
                year = int(title_match.group(2))
            else:
                title = title_year.strip()
                year = None
            summary = summary.strip()
            papers.append({
                'title': title,
                'year': year,
                'summary': summary
            })
        except ValueError:
            continue  # Skip blocks that don't match the expected format
    return papers

def save_paper_files(paper, voice):
    """Generate and save Markdown and MP3 files for a paper."""
    # Create Markdown file
    md_filename = create_md_file(paper)
    
    # Generate audio for the entire paper
    audio_text = f"{paper['title']}. {paper['summary']}"
    audio_filename = speak_with_edge_tts(audio_text, voice)
    
    return md_filename, audio_filename

def display_papers(papers, voice):
    """Display all papers with options to generate audio."""
    for idx, paper in enumerate(papers):
        st.markdown(f"### {idx + 1}. {paper['title']} ({paper['year'] if paper['year'] else 'Unknown Year'})")
        st.markdown(f"**Summary:** {paper['summary']}")
        
        # Button to generate and play audio
        if st.button(f"πŸ”Š Read Aloud - {paper['title']}", key=f"read_aloud_{idx}"):
            md_file, audio_file = save_paper_files(paper, voice)
            if audio_file:
                st.success("Audio generated successfully!")
                play_and_download_audio(audio_file)
            else:
                st.error("Failed to generate audio.")
        
        st.write("---")

def cache_parsed_papers(papers):
    """Cache the parsed papers."""
    st.session_state['parsed_papers'] = papers

def get_cached_papers():
    """Retrieve cached papers."""
    return st.session_state.get('parsed_papers', [])

def save_full_transcript(query, text):
    """Save full transcript of Arxiv results as a file."""
    filename = generate_filename("transcript", query, "md")
    with open(filename, 'w', encoding='utf-8') as f:
        f.write(text)
    return filename

def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, 
                      titles_summary=True, full_audio=False, selected_voice="en-US-AriaNeural"):
    """Perform Arxiv search and generate audio summaries."""
    start = time.time()

    # 🎯 1) Query the HF RAG pipeline
    client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
    refs = client.predict(q, 20, "Semantic Search", "mistralai/Mixtral-8x7B-Instruct-v0.1", api_name="/update_with_rag_md")[0]
    r2 = client.predict(q, "mistralai/Mixtral-8x7B-Instruct-v0.1", True, api_name="/ask_llm")
    
    # 🎯 2) Combine for final text output
    clean_q = q.replace('\n', ' ')
    result = f"### πŸ”Ž {clean_q}\n\n{r2}\n\n{refs}"
    st.markdown(result)
    
    # 🎯 3) Parse papers from the references
    parsed_papers = parse_papers(refs)
    cache_parsed_papers(parsed_papers)
    
    # 🎯 4) Display all parsed papers with options
    st.write("## Individual Papers")
    display_papers(parsed_papers, selected_voice)
    
    elapsed = time.time() - start
    st.write(f"**Total Elapsed:** {elapsed:.2f} s")
    
    # Always create a file with the result
    save_full_transcript(clean_q, result)
    
    return result

# πŸ“‚ 10. File Management
def create_zip_of_files(md_files, mp3_files):
    """Create zip with intelligent naming."""
    md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
    all_files = md_files + mp3_files
    if not all_files:
        return None

    # Collect content for high-info term extraction
    all_content = []
    for f in all_files:
        if f.endswith('.md'):
            with open(f, 'r', encoding='utf-8') as file:
                all_content.append(file.read())
        elif f.endswith('.mp3'):
            all_content.append(os.path.basename(f))

    combined_content = " ".join(all_content)
    info_terms = get_high_info_terms(combined_content)

    timestamp = datetime.now().strftime("%y%m_%H%M")
    name_text = '_'.join(term.replace(' ', '-') for term in info_terms[:3])
    zip_name = f"{timestamp}_{name_text}.zip"

    with zipfile.ZipFile(zip_name,'w') as z:
        for f in all_files:
            z.write(f)

    return zip_name

def load_files_for_sidebar():
    """Load and group files for sidebar display."""
    md_files = glob.glob("*.md")
    mp3_files = glob.glob("*.mp3")

    md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
    all_files = md_files + mp3_files

    groups = defaultdict(list)
    for f in all_files:
        fname = os.path.basename(f)
        prefix = fname[:10]
        groups[prefix].append(f)

    for prefix in groups:
        groups[prefix].sort(key=lambda x: os.path.getmtime(x), reverse=True)

    sorted_prefixes = sorted(groups.keys(), 
                           key=lambda pre: max(os.path.getmtime(x) for x in groups[pre]), 
                           reverse=True)
    return groups, sorted_prefixes

def extract_keywords_from_md(files):
    """Extract keywords from markdown files."""
    text = ""
    for f in files:
        if f.endswith(".md"):
            c = open(f,'r',encoding='utf-8').read()
            text += " " + c
    return get_high_info_terms(text)

def display_file_manager_sidebar(groups, sorted_prefixes):
    """Display file manager in sidebar."""
    st.sidebar.title("🎡 Audio & Docs Manager")

    all_md = []
    all_mp3 = []
    for prefix in groups:
        for f in groups[prefix]:
            if f.endswith(".md"):
                all_md.append(f)
            elif f.endswith(".mp3"):
                all_mp3.append(f)

    top_bar = st.sidebar.columns(3)
    with top_bar[0]:
        if st.button("πŸ—‘ DelAllMD"):
            for f in all_md:
                os.remove(f)
            st.session_state.should_rerun = True
    with top_bar[1]:
        if st.button("πŸ—‘ DelAllMP3"):
            for f in all_mp3:
                os.remove(f)
            st.session_state.should_rerun = True
    with top_bar[2]:
        if st.button("⬇️ ZipAll"):
            z = create_zip_of_files(all_md, all_mp3)
            if z:
                st.sidebar.markdown(get_download_link(z), unsafe_allow_html=True)

    for prefix in sorted_prefixes:
        files = groups[prefix]
        kw = extract_keywords_from_md(files)
        keywords_str = " ".join(kw) if kw else "No Keywords"
        with st.sidebar.expander(f"{prefix} Files ({len(files)}) - KW: {keywords_str}", expanded=True):
            c1, c2 = st.columns(2)
            with c1:
                if st.button("πŸ‘€ View Group", key="view_group_"+prefix):
                    st.session_state.viewing_prefix = prefix
            with c2:
                if st.button("πŸ—‘ Delete Group", key="del_group_"+prefix):
                    for f in files:
                        os.remove(f)
                    st.success(f"Deleted group {prefix}!")
                    st.session_state.should_rerun = True

            for f in files:
                fname = os.path.basename(f)
                ctime = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%Y-%m-%d %H:%M:%S")
                st.write(f"**{fname}** - {ctime}")

# 🎯 11. Main Application
async def get_available_voices():
    voices = await edge_tts.list_voices()
    return [voice["ShortName"] for voice in voices if voice["Locale"].startswith("en")]

@st.cache_resource
def fetch_voices():
    return asyncio.run(get_available_voices())

def main():
    st.sidebar.markdown("### 🚲BikeAIπŸ† Multi-Agent Research")
    tab_main = st.radio("Action:", ["🎀 Voice", "πŸ“Έ Media", "πŸ” ArXiv", "πŸ“ Editor"], horizontal=True)

    # Initialize voices if not already done
    if not st.session_state['voices']:
        st.session_state['voices'] = fetch_voices()

    st.sidebar.markdown("### 🎀 Select Voice for Audio Generation")
    selected_voice = st.sidebar.selectbox(
        "Choose a voice:",
        options=st.session_state['voices'],
        index=st.session_state['voices'].index("en-US-AriaNeural") if "en-US-AriaNeural" in st.session_state['voices'] else 0
    )

    # Main Tabs
    if tab_main == "πŸ” ArXiv":
        st.subheader("πŸ” Query ArXiv")
        q = st.text_input("πŸ” Query:").replace('\n', ' ')

        st.markdown("### πŸŽ› Options")
        vocal_summary = st.checkbox("πŸŽ™ Short Audio", value=True)
        extended_refs = st.checkbox("πŸ“œ Long References", value=False)
        titles_summary = st.checkbox("πŸ”– Titles Only", value=True)
        full_audio = st.checkbox("πŸ“š Full Audio", value=False, help="Generate full audio response")
        full_transcript = st.checkbox("🧾 Full Transcript", value=False, help="Generate a full transcript file")

        if q and st.button("πŸ” Run"):
            result = perform_ai_lookup(
                q, 
                vocal_summary=vocal_summary, 
                extended_refs=extended_refs, 
                titles_summary=titles_summary, 
                full_audio=full_audio, 
                selected_voice=selected_voice
            )
            if full_transcript:
                save_full_transcript(q, result)

        st.markdown("### Change Prompt & Re-Run")
        q_new = st.text_input("πŸ”„ Modify Query:").replace('\n', ' ')
        if q_new and st.button("πŸ”„ Re-Run with Modified Query"):
            result = perform_ai_lookup(
                q_new, 
                vocal_summary=vocal_summary, 
                extended_refs=extended_refs, 
                titles_summary=titles_summary, 
                full_audio=full_audio, 
                selected_voice=selected_voice
            )
            if full_transcript:
                save_full_transcript(q_new, result)

    elif tab_main == "🎀 Voice":
        st.subheader("🎀 Voice Input")
        user_text = st.text_area("πŸ’¬ Message:", height=100)
        user_text = user_text.strip().replace('\n', ' ')
        if st.button("πŸ“¨ Send"):
            process_with_gpt(user_text)
        st.subheader("πŸ“œ Chat History")
        t1, t2 = st.tabs(["Claude History", "GPT-4o History"])
        with t1:
            for c in st.session_state.get('chat_history', []):
                st.write("**You:**", c["user"])
                st.write("**Claude:**", c["claude"])
        with t2:
            for m in st.session_state.get('messages', []):
                with st.chat_message(m["role"]):
                    st.markdown(m["content"])

    elif tab_main == "πŸ“Έ Media":
        st.header("πŸ“Έ Images & πŸŽ₯ Videos")
        tabs = st.tabs(["πŸ–Ό Images", "πŸŽ₯ Video"])
        with tabs[0]:
            imgs = glob.glob("*.png") + glob.glob("*.jpg")
            if imgs:
                cols = st.columns(min(5, len(imgs)))
                for i, f in enumerate(imgs[:20]):
                    with cols[i % len(cols)]:
                        st.image(Image.open(f), use_container_width=True)
                        if st.button(f"πŸ‘€ Analyze {os.path.basename(f)}", key=f"analyze_{f}"):
                            analysis = process_image(f, "Describe this image.")
                            st.markdown(analysis)
            else:
                st.write("No images found.")

        with tabs[1]:
            vids = glob.glob("*.mp4")[:20]
            if vids:
                for v in vids:
                    with st.expander(f"πŸŽ₯ {os.path.basename(v)}"):
                        st.video(v)
                        if st.button(f"Analyze {os.path.basename(v)}", key=f"analyze_{v}"):
                            analysis = process_video_with_gpt(v, "Describe video.")
                            st.markdown(analysis)
            else:
                st.write("No videos found.")

    elif tab_main == "πŸ“ Editor":
        st.subheader("πŸ“ Editor")
        files = glob.glob("*.md")
        if files:
            selected_file = st.selectbox("Select a file to edit:", files)
            if selected_file:
                with open(selected_file, 'r', encoding='utf-8') as f:
                    file_content = f.read()
                new_text = st.text_area("✏️ Content:", file_content, height=300)
                if st.button("πŸ’Ύ Save"):
                    with open(selected_file, 'w', encoding='utf-8') as f:
                        f.write(new_text)
                    st.success("File updated successfully!")
                    st.session_state.should_rerun = True
        else:
            st.write("No Markdown files available for editing.")

    # File Manager Sidebar
    groups, sorted_prefixes = load_files_for_sidebar()
    display_file_manager_sidebar(groups, sorted_prefixes)

    if st.session_state.viewing_prefix and st.session_state.viewing_prefix in groups:
        st.write("---")
        st.write(f"**Viewing Group:** {st.session_state.viewing_prefix}")
        for f in groups[st.session_state.viewing_prefix]:
            fname = os.path.basename(f)
            ext = os.path.splitext(fname)[1].lower().strip('.')
            st.write(f"### {fname}")
            if ext == "md":
                with open(f, 'r', encoding='utf-8') as file:
                    content = file.read()
                st.markdown(content)
            elif ext == "mp3":
                st.audio(f)
            else:
                st.markdown(get_download_link(f), unsafe_allow_html=True)
        if st.button("❌ Close"):
            st.session_state.viewing_prefix = None

    if st.session_state.should_rerun:
        st.session_state.should_rerun = False
        st.experimental_rerun()

def process_with_gpt(text):
    """Process text with GPT-4."""
    if not text: 
        return
    # Initialize messages if not present
    if 'messages' not in st.session_state:
        st.session_state['messages'] = []
    st.session_state['messages'].append({"role":"user","content":text})
    with st.chat_message("user"):
        st.markdown(text)
    with st.chat_message("assistant"):
        try:
            response = openai.ChatCompletion.create(
                model=st.session_state["openai_model"],
                messages=st.session_state['messages'],
                stream=False
            )
            ans = response.choices[0].message.content
            st.write("GPT-4o: " + ans)
            create_md_file({"title": "User Query", "year": None, "summary": ans})
            st.session_state['messages'].append({"role":"assistant","content":ans})
        except Exception as e:
            st.error(f"Error processing with GPT-4: {e}")

def process_with_claude(text):
    """Process text with Claude."""
    if not text: 
        return
    # Initialize chat_history if not present
    if 'chat_history' not in st.session_state:
        st.session_state['chat_history'] = []
    with st.chat_message("user"):
        st.markdown(text)
    with st.chat_message("assistant"):
        try:
            response = claude_client.messages.create(
                model="claude-3-sonnet-20240229",
                max_tokens=1000,
                messages=[{"role":"user","content":text}]
            )
            ans = response.content[0].text
            st.write("Claude-3.5: " + ans)
            create_md_file({"title": "User Query", "year": None, "summary": ans})
            st.session_state['chat_history'].append({"user":text,"claude":ans})
        except Exception as e:
            st.error(f"Error processing with Claude: {e}")

# Run the application
if __name__=="__main__":
    main()