File size: 6,715 Bytes
b1d0519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#!/usr/bin/env python3

import os
import re
import glob
import json
import base64
import zipfile
import random
import requests
import openai

from PIL import Image
from urllib.parse import quote

import streamlit as st
import streamlit.components.v1 as components

# Example base snippet: your normal Mermaid code
DEFAULT_MERMAID = r"""
flowchart LR
    U((User 😎)) -- "Talk 🗣️" --> LLM[LLM Agent 🤖\nExtract Info]
    click U "/?q=User%20😎" "Open 'User 😎'" "_blank"
    click LLM "/?q=LLM%20Agent%20Extract%20Info" "Open LLM Agent" "_blank"

    LLM -- "Query 🔍" --> HS[Hybrid Search 🔎\nVector+NER+Lexical]
    click HS "/?q=Hybrid%20Search%20Vector+NER+Lexical" "Open Hybrid Search" "_blank"

    HS -- "Reason 🤔" --> RE[Reasoning Engine 🛠️\nNeuralNetwork+Medical]
    click RE "/?q=Reasoning%20Engine%20NeuralNetwork+Medical" "Open Reasoning" "_blank"

    RE -- "Link 📡" --> KG((Knowledge Graph 📚\nOntology+GAR+RAG))
    click KG "/?q=Knowledge%20Graph%20Ontology+GAR+RAG" "Open Knowledge Graph" "_blank"
"""

def parse_mermaid_edges(mermaid_text: str):
    """
    🍿 parse_mermaid_edges:
      - Find lines like `A -- "Label" --> B`.
      - Return adjacency dict: edges[A] = [(label, B), ...].
    """
    adjacency = {}
    # Regex to match lines like:  A -- "Label" --> B
    edge_pattern = re.compile(r'(\S+)\s*--\s*"([^"]*)"\s*-->\s*(\S+)')
    
    # We split the text into lines and search for edges
    for line in mermaid_text.split('\n'):
        match = edge_pattern.search(line.strip())
        if match:
            nodeA, label, nodeB = match.groups()
            if nodeA not in adjacency:
                adjacency[nodeA] = []
            adjacency[nodeA].append((label, nodeB))

    return adjacency

def build_subgraph(adjacency, start_node):
    """
    🍎 build_subgraph:
      - BFS or DFS from start_node to gather edges.
      - For simplicity, we only gather direct edges from this node.
      - If you want a multi-level downstream search, do a BFS/DFS deeper.
    """
    sub_edges = []
    # If start_node has no adjacency, return empty
    if start_node not in adjacency:
        return sub_edges
    
    # For each edge out of start_node, store it in sub_edges
    for label, child in adjacency[start_node]:
        sub_edges.append((start_node, label, child))

    return sub_edges

def create_subgraph_mermaid(sub_edges, start_node):
    """
    🍄 create_subgraph_mermaid:
      - Given a list of edges in form (A, label, B),
      - Return a smaller flowchart snippet that includes them.
    """
    # Start with the flowchart directive
    sub_mermaid = "flowchart LR\n"
    sub_mermaid += f"    %% Subgraph for {start_node}\n"

    # For each edge, build a line:   NodeA -- "Label" --> NodeB
    for (A, label, B) in sub_edges:
        # Potentially you can keep the original styles or shapes (like U((User 😎))).
        # If your original code has shapes, you can store them in a dict so A-> "U((User 😎))" etc.
        sub_mermaid += f'    {A} -- "{label}" --> {B}\n'
    
    # Optionally add a comment to show the subgraph ends
    sub_mermaid += f"    %% End of subgraph for {start_node}\n"
    return sub_mermaid

def generate_mermaid_html(mermaid_code: str) -> str:
    """Tiny function to embed Mermaid code in HTML with a CDN."""
    return f"""
    <html>
    <head>
        <script src="https://cdn.jsdelivr.net/npm/mermaid/dist/mermaid.min.js"></script>
        <style>
            .centered-mermaid {{
                display: flex;
                justify-content: center;
                margin: 20px auto;
            }}
            .mermaid {{
                max-width: 800px;
            }}
        </style>
    </head>
    <body>
        <div class="mermaid centered-mermaid">
            {mermaid_code}
        </div>
        <script>
            mermaid.initialize({{ startOnLoad: true }});
        </script>
    </body>
    </html>
    """

def main():
    st.set_page_config(page_title="Partial Subgraph Demo", layout="wide")
    st.title("Partial Mermaid Subgraph from a Clicked Node")

    # 1) Show the main diagram
    st.subheader("Full Diagram:")
    full_html = generate_mermaid_html(DEFAULT_MERMAID)
    components.html(full_html, height=400, scrolling=True)

    # 2) Build adjacency from the original code
    adjacency = parse_mermaid_edges(DEFAULT_MERMAID)

    # 3) See if user clicked a shape, e.g. ?q=LLM%20Agent%20Extract%20Info
    query_params = st.query_params
    clicked = (query_params.get('q') or [""])[0]  # If present

    if clicked:
        # The "clicked" node might contain spaces or special chars.
        # We typically match the "nodeId" from the code. 
        # But your code might have the real node name "LLM" or "RE", etc.
        # If your node is "LLM" and the label is "LLM Agent Extract Info", 
        # you might need to map them. 
        # For simplicity, let's assume your node ID is the same as the label 
        # after removing spaces. 
        # Or if your original code uses node IDs like 'LLM' or 'U'.
        # We'll show an example:

        # We can guess your node ID might be "LLM" if the text includes "LLM".
        # Let's try a simpler approach: you store an internal mapping 
        # from node ID -> label. We'll do a brute force approach:
        st.info(f"User clicked shape: {clicked}")

        # Suppose we want to find the adjacency key that best matches the clicked string:
        # This is a naive approach:
        # We'll see if 'clicked' is a substring of the adjacency's node key.
        possible_keys = []
        for nodeKey in adjacency.keys():
            if clicked.lower().replace("%20", " ").replace("extract info", "") in nodeKey.lower():
                possible_keys.append(nodeKey)
        # If we found one or more possible matches, take the first
        if possible_keys:
            chosen_node = possible_keys[0]
            # Build subgraph from adjacency
            sub_edges = build_subgraph(adjacency, chosen_node)
            if sub_edges:
                sub_mermaid = create_subgraph_mermaid(sub_edges, chosen_node)

                # Display top-centered subgraph
                st.subheader(f"SearchResult Subgraph for Node: {chosen_node}")
                partial_html = generate_mermaid_html(sub_mermaid)
                components.html(partial_html, height=300, scrolling=False)
            else:
                st.warning(f"No outgoing edges from node '{chosen_node}'.")
        else:
            st.warning("No matching node found in adjacency for that query param.")
    else:
        st.info("No shape clicked, or no ?q= in the query parameters.")


if __name__ == "__main__":
    main()