awacke1's picture
Update app.py
08f9116 verified
raw
history blame
27 kB
#!/usr/bin/env python3
import os
import re
import glob
import json
import base64
import zipfile
import random
import requests
import openai
from PIL import Image
from urllib.parse import quote
import streamlit as st
import streamlit.components.v1 as components
# 🏰 If you do model inference via huggingface_hub
# from huggingface_hub import InferenceClient
# =====================================================================================
# 1) GLOBAL CONFIG & PLACEHOLDERS
# =====================================================================================
BASE_URL = "https://huggingface.co/spaces/awacke1/MermaidMarkdownDiagramEditor"
PromptPrefix = "AI-Search: "
PromptPrefix2 = "AI-Refine: "
PromptPrefix3 = "AI-JS: "
roleplaying_glossary = {
"Core Rulebooks": {
"Dungeons and Dragons": ["Player's Handbook", "Dungeon Master's Guide", "Monster Manual"],
"GURPS": ["Basic Set Characters", "Basic Set Campaigns"]
},
"Campaigns & Adventures": {
"Pathfinder": ["Rise of the Runelords", "Curse of the Crimson Throne"]
}
}
transhuman_glossary = {
"Neural Interfaces": ["Cortex Jack", "Mind-Machine Fusion"],
"Cybernetics": ["Robotic Limbs", "Augmented Eyes"],
}
def process_text(text):
"""🕵️ process_text: detective style—prints lines to Streamlit for debugging."""
st.write(f"process_text called with: {text}")
def search_arxiv(text):
"""🔭 search_arxiv: pretend to search ArXiv, just prints debug for now."""
st.write(f"search_arxiv called with: {text}")
def SpeechSynthesis(text):
"""🗣 SpeechSynthesis: read lines out loud? Here, we log them for demonstration."""
st.write(f"SpeechSynthesis called with: {text}")
def process_image(image_file, prompt):
"""📷 process_image: imagine an AI pipeline for images, here we just log."""
return f"[process_image placeholder] {image_file} => {prompt}"
def process_video(video_file, seconds_per_frame):
"""🎞 process_video: placeholder for video tasks, logs to Streamlit."""
st.write(f"[process_video placeholder] {video_file}, {seconds_per_frame} sec/frame")
API_URL = "https://huggingface-inference-endpoint-placeholder"
API_KEY = "hf_XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
@st.cache_resource
def InferenceLLM(prompt):
"""🔮 InferenceLLM: a stub returning a mock response for 'prompt'."""
return f"[InferenceLLM placeholder response to prompt: {prompt}]"
# =====================================================================================
# 2) GLOSSARY & FILE UTILITY
# =====================================================================================
@st.cache_resource
def display_glossary_entity(k):
"""
Creates multiple link emojis for a single entity.
Each link might point to /?q=..., /?q=<prefix>..., or external sites.
"""
search_urls = {
"🚀🌌ArXiv": lambda x: f"/?q={quote(x)}",
"🃏Analyst": lambda x: f"/?q={quote(x)}-{quote(PromptPrefix)}",
"📚PyCoder": lambda x: f"/?q={quote(x)}-{quote(PromptPrefix2)}",
"🔬JSCoder": lambda x: f"/?q={quote(x)}-{quote(PromptPrefix3)}",
"📖": lambda x: f"https://en.wikipedia.org/wiki/{quote(x)}",
"🔍": lambda x: f"https://www.google.com/search?q={quote(x)}",
"🔎": lambda x: f"https://www.bing.com/search?q={quote(x)}",
"🎥": lambda x: f"https://www.youtube.com/results?search_query={quote(x)}",
"🐦": lambda x: f"https://twitter.com/search?q={quote(x)}",
}
links_md = ' '.join([f"[{emoji}]({url(k)})" for emoji, url in search_urls.items()])
st.markdown(f"**{k}** <small>{links_md}</small>", unsafe_allow_html=True)
def display_content_or_image(query):
"""
If 'query' is in transhuman_glossary or there's an image matching 'images/<query>.png',
we show it. Otherwise warn.
"""
for category, term_list in transhuman_glossary.items():
for term in term_list:
if query.lower() in term.lower():
st.subheader(f"Found in {category}:")
st.write(term)
return True
image_path = f"images/{query}.png"
if os.path.exists(image_path):
st.image(image_path, caption=f"Image for {query}")
return True
st.warning("No matching content or image found.")
return False
def clear_query_params():
"""For fully clearing, you'd do a redirect or st.experimental_set_query_params()."""
st.warning("Define a redirect or link without query params if you want to truly clear them.")
# =====================================================================================
# 3) FILE-HANDLING (MD files, etc.)
# =====================================================================================
def load_file(file_path):
"""Load file contents as UTF-8 text, or return empty on error."""
try:
with open(file_path, "r", encoding='utf-8') as f:
return f.read()
except:
return ""
@st.cache_resource
def create_zip_of_files(files):
"""Combine multiple local files into a single .zip for user to download."""
zip_name = "Arxiv-Paper-Search-QA-RAG-Streamlit-Gradio-AP.zip"
with zipfile.ZipFile(zip_name, 'w') as zipf:
for file in files:
zipf.write(file)
return zip_name
@st.cache_resource
def get_zip_download_link(zip_file):
"""Return an <a> link to download the given zip_file (base64-encoded)."""
with open(zip_file, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
return f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
def get_table_download_link(file_path):
"""
Creates a download link for a single file from your snippet.
Encodes it as base64 data.
"""
try:
with open(file_path, 'r', encoding='utf-8') as file:
data = file.read()
b64 = base64.b64encode(data.encode()).decode()
file_name = os.path.basename(file_path)
ext = os.path.splitext(file_name)[1]
mime_map = {
'.txt': 'text/plain',
'.py': 'text/plain',
'.xlsx': 'text/plain',
'.csv': 'text/plain',
'.htm': 'text/html',
'.md': 'text/markdown',
'.wav': 'audio/wav'
}
mime_type = mime_map.get(ext, 'application/octet-stream')
return f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
except:
return ''
def get_file_size(file_path):
"""Get file size in bytes."""
return os.path.getsize(file_path)
def FileSidebar():
"""
Renders .md files in the sidebar with open/view/run/delete logic.
"""
all_files = glob.glob("*.md")
# If you want to filter out short-named or special files:
all_files = [f for f in all_files if len(os.path.splitext(f)[0]) >= 5]
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True)
# Buttons for "Delete All" and "Download"
Files1, Files2 = st.sidebar.columns(2)
with Files1:
if st.button("🗑 Delete All"):
for file in all_files:
os.remove(file)
st.rerun()
with Files2:
if st.button("⬇️ Download"):
zip_file = create_zip_of_files(all_files)
st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True)
file_contents = ''
file_name = ''
next_action = ''
# Each file row
for file in all_files:
col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1])
with col1:
if st.button("🌐", key="md_"+file):
file_contents = load_file(file)
file_name = file
next_action = 'md'
st.session_state['next_action'] = next_action
with col2:
st.markdown(get_table_download_link(file), unsafe_allow_html=True)
with col3:
if st.button("📂", key="open_"+file):
file_contents = load_file(file)
file_name = file
next_action = 'open'
st.session_state['lastfilename'] = file
st.session_state['filename'] = file
st.session_state['filetext'] = file_contents
st.session_state['next_action'] = next_action
with col4:
if st.button("▶️", key="read_"+file):
file_contents = load_file(file)
file_name = file
next_action = 'search'
st.session_state['next_action'] = next_action
with col5:
if st.button("🗑", key="delete_"+file):
os.remove(file)
st.rerun()
if file_contents:
if next_action == 'open':
open1, open2 = st.columns([0.8, 0.2])
with open1:
file_name_input = st.text_input('File Name:', file_name, key='file_name_input')
file_content_area = st.text_area('File Contents:', file_contents, height=300, key='file_content_area')
if st.button('💾 Save File'):
with open(file_name_input, 'w', encoding='utf-8') as f:
f.write(file_content_area)
st.markdown(f'Saved {file_name_input} successfully.')
elif next_action == 'search':
file_content_area = st.text_area("File Contents:", file_contents, height=500)
user_prompt = PromptPrefix2 + file_contents
st.markdown(user_prompt)
if st.button('🔍Re-Code'):
search_arxiv(file_contents)
elif next_action == 'md':
st.markdown(file_contents)
SpeechSynthesis(file_contents)
if st.button("🔍Run"):
st.write("Running GPT logic placeholder...")
# =====================================================================================
# 4) SCORING / GLOSSARIES
# =====================================================================================
score_dir = "scores"
os.makedirs(score_dir, exist_ok=True)
def generate_key(label, header, idx):
return f"{header}_{label}_{idx}_key"
def update_score(key, increment=1):
"""Increment the 'score' for a glossary item in JSON storage."""
score_file = os.path.join(score_dir, f"{key}.json")
if os.path.exists(score_file):
with open(score_file, "r") as file:
score_data = json.load(file)
else:
score_data = {"clicks": 0, "score": 0}
score_data["clicks"] += increment
score_data["score"] += increment
with open(score_file, "w") as file:
json.dump(score_data, file)
return score_data["score"]
def load_score(key):
"""Load the stored score from .json if it exists, else 0."""
file_path = os.path.join(score_dir, f"{key}.json")
if os.path.exists(file_path):
with open(file_path, "r") as file:
score_data = json.load(file)
return score_data["score"]
return 0
def display_buttons_with_scores(num_columns_text):
"""
Show glossary items as clickable buttons, each increments a 'score'.
"""
game_emojis = {
"Dungeons and Dragons": "🐉",
"Call of Cthulhu": "🐙",
"GURPS": "🎲",
"Pathfinder": "🗺️",
"Kindred of the East": "🌅",
"Changeling": "🍃",
}
topic_emojis = {
"Core Rulebooks": "📚",
"Maps & Settings": "🗺️",
"Game Mechanics & Tools": "⚙️",
"Monsters & Adversaries": "👹",
"Campaigns & Adventures": "📜",
"Creatives & Assets": "🎨",
"Game Master Resources": "🛠️",
"Lore & Background": "📖",
"Character Development": "🧍",
"Homebrew Content": "🔧",
"General Topics": "🌍",
}
for category, games in roleplaying_glossary.items():
category_emoji = topic_emojis.get(category, "🔍")
st.markdown(f"## {category_emoji} {category}")
for game, terms in games.items():
game_emoji = game_emojis.get(game, "🎮")
for term in terms:
key = f"{category}_{game}_{term}".replace(' ', '_').lower()
score_val = load_score(key)
if st.button(f"{game_emoji} {category} {game} {term} {score_val}", key=key):
newscore = update_score(key.replace('?', ''))
st.markdown(f"Scored **{category} - {game} - {term}** -> {newscore}")
# =====================================================================================
# 5) IMAGES & VIDEOS
# =====================================================================================
def display_images_and_wikipedia_summaries(num_columns=4):
"""Display .png images in a grid, referencing the name as a 'keyword'."""
image_files = [f for f in os.listdir('.') if f.endswith('.png')]
if not image_files:
st.write("No PNG images found in the current directory.")
return
image_files_sorted = sorted(image_files, key=lambda x: len(x.split('.')[0]))
cols = st.columns(num_columns)
col_index = 0
for image_file in image_files_sorted:
with cols[col_index % num_columns]:
try:
image = Image.open(image_file)
st.image(image, use_column_width=True)
k = image_file.split('.')[0]
display_glossary_entity(k)
image_text_input = st.text_input(f"Prompt for {image_file}", key=f"image_prompt_{image_file}")
if image_text_input:
response = process_image(image_file, image_text_input)
st.markdown(response)
except:
st.write(f"Could not open {image_file}")
col_index += 1
def display_videos_and_links(num_columns=4):
"""Displays all .mp4/.webm in a grid, plus text input for prompts."""
video_files = [f for f in os.listdir('.') if f.endswith(('.mp4', '.webm'))]
if not video_files:
st.write("No MP4 or WEBM videos found in the current directory.")
return
video_files_sorted = sorted(video_files, key=lambda x: len(x.split('.')[0]))
cols = st.columns(num_columns)
col_index = 0
for video_file in video_files_sorted:
with cols[col_index % num_columns]:
k = video_file.split('.')[0]
st.video(video_file, format='video/mp4', start_time=0)
display_glossary_entity(k)
video_text_input = st.text_input(f"Video Prompt for {video_file}", key=f"video_prompt_{video_file}")
if video_text_input:
try:
seconds_per_frame = 10
process_video(video_file, seconds_per_frame)
except ValueError:
st.error("Invalid input for seconds per frame!")
col_index += 1
# =====================================================================================
# 6) MERMAID & PARTIAL SUBGRAPH LOGIC
# =====================================================================================
def generate_mermaid_html(mermaid_code: str) -> str:
"""Embed mermaid_code in a minimal HTML snippet, centered."""
return f"""
<html>
<head>
<script src="https://cdn.jsdelivr.net/npm/mermaid/dist/mermaid.min.js"></script>
<style>
.centered-mermaid {{
display: flex;
justify-content: center;
margin: 20px auto;
}}
.mermaid {{
max-width: 800px;
}}
</style>
</head>
<body>
<div class="mermaid centered-mermaid">
{mermaid_code}
</div>
<script>
mermaid.initialize({{ startOnLoad: true }});
</script>
</body>
</html>
"""
def append_model_param(url: str, model_selected: bool) -> str:
"""If user selects 'model=1', we append &model=1 or ?model=1 if not present."""
if not model_selected:
return url
delimiter = "&" if "?" in url else "?"
return f"{url}{delimiter}model=1"
def inject_base_url(url: str) -> str:
"""If link doesn't start with 'http', prepend BASE_URL so it's absolute."""
if url.startswith("http"):
return url
return f"{BASE_URL}{url}"
# We'll keep the default mermaid that references /?q=...
DEFAULT_MERMAID = r"""
flowchart LR
U((User 😎)) -- "Talk 🗣️" --> LLM[LLM Agent 🤖\nExtract Info]
click U "/?q=User%20😎" "Open 'User 😎'" "_blank"
click LLM "/?q=LLM%20Agent%20Extract%20Info" "Open LLM Agent" "_blank"
LLM -- "Query 🔍" --> HS[Hybrid Search 🔎\nVector+NER+Lexical]
click HS "/?q=Hybrid%20Search%20Vector+NER+Lexical" "Open Hybrid Search" "_blank"
HS -- "Reason 🤔" --> RE[Reasoning Engine 🛠️\nNeuralNetwork+Medical]
click RE "/?q=Reasoning%20Engine%20NeuralNetwork+Medical" "Open Reasoning" "_blank"
RE -- "Link 📡" --> KG((Knowledge Graph 📚\nOntology+GAR+RAG))
click KG "/?q=Knowledge%20Graph%20Ontology+GAR+RAG" "Open Knowledge Graph" "_blank"
"""
# ------------------------------------------------------------------------------------
# 🍁 Parsing and building partial subgraphs from lines like "A -- Label --> B"
# We'll do BFS so we can gather multiple downstream levels if we want.
# ------------------------------------------------------------------------------------
def parse_mermaid_edges(mermaid_text: str):
"""
🍿 parse_mermaid_edges:
- Find lines like: A -- "Label" --> B
- Return adjacency dict: edges[A] = [(label, B), ...]
"""
adjacency = {}
# e.g. U((User 😎)) -- "Talk 🗣️" --> LLM[LLM Agent 🤖\nExtract Info]
edge_pattern = re.compile(r'(\S+)\s*--\s*"([^"]*)"\s*-->\s*(\S+)')
for line in mermaid_text.split('\n'):
match = edge_pattern.search(line.strip())
if match:
nodeA, label, nodeB = match.groups()
if nodeA not in adjacency:
adjacency[nodeA] = []
adjacency[nodeA].append((label, nodeB))
return adjacency
def bfs_subgraph(adjacency, start_node, depth=1):
"""
🍎 bfs_subgraph:
- Gather edges up to 'depth' levels from start_node
- If depth=1, only direct edges from node
- If depth=2, child and grandchild, etc.
"""
from collections import deque
visited = set()
queue = deque([(start_node, 0)])
edges = []
while queue:
current, lvl = queue.popleft()
if current in visited:
continue
visited.add(current)
if current in adjacency and lvl < depth:
for (label, child) in adjacency[current]:
edges.append((current, label, child))
queue.append((child, lvl + 1))
return edges
def create_subgraph_mermaid(sub_edges, start_node):
"""
🍄 create_subgraph_mermaid:
- build a smaller flowchart snippet with edges from BFS
"""
sub_mermaid = "flowchart LR\n"
sub_mermaid += f" %% SearchResult Subgraph starting at {start_node}\n"
for (A, label, B) in sub_edges:
sub_mermaid += f' {A} -- "{label}" --> {B}\n'
sub_mermaid += " %% End of partial subgraph\n"
return sub_mermaid
# =====================================================================================
# 7) MAIN APP
# =====================================================================================
def main():
st.set_page_config(page_title="Mermaid + BFS Subgraph + Full Logic", layout="wide")
# 1) Query param parsing
query_params = st.query_params
query_list = (query_params.get('q') or query_params.get('query') or [''])
q_or_query = query_list[0].strip() if len(query_list) > 0 else ""
# If 'action' param is present
if 'action' in query_params:
action_list = query_params['action']
if action_list:
action = action_list[0]
if action == 'show_message':
st.success("Showing a message because 'action=show_message' was found in the URL.")
elif action == 'clear':
clear_query_params()
# If there's a 'query=' param, display content or image
if 'query' in query_params:
query_val = query_params['query'][0]
display_content_or_image(query_val)
# 2) Let user pick ?model=1
st.sidebar.write("## Diagram Link Settings")
model_selected = st.sidebar.checkbox("Append ?model=1 to each link?")
# 3) We'll parse adjacency from DEFAULT_MERMAID, then do the injection for base URL
# and possible model param. We'll store the final mermaid code in session.
lines = DEFAULT_MERMAID.strip().split("\n")
new_lines = []
for line in lines:
if "click " in line and '"/?' in line:
# try to parse out the URL
parts = re.split(r'click\s+\S+\s+"([^"]+)"\s+"([^"]+)"\s+"([^"]+)"', line)
# For example: parts might be [prefix, '/?q=User%20😎', 'Open User 😎', '_blank', remainder?]
if len(parts) == 5:
# Reassemble with base URL + optional model param
old_url = parts[1]
tooltip = parts[2]
target = parts[3]
# 1) base
new_url = inject_base_url(old_url)
# 2) model param
new_url = append_model_param(new_url, model_selected)
new_line = f"{parts[0]}\"{new_url}\" \"{tooltip}\" \"{target}\"{parts[4]}"
new_lines.append(new_line)
else:
new_lines.append(line)
else:
new_lines.append(line)
final_mermaid = "\n".join(new_lines)
adjacency = parse_mermaid_edges(final_mermaid)
# 4) If user clicked a shape -> we show a partial subgraph as "SearchResult"
# We'll do BFS with depth=1 or 2 for demonstration:
partial_subgraph_html = ""
if q_or_query:
st.info(f"process_text called with: {PromptPrefix}{q_or_query}")
# Attempt to find a node whose ID or label includes q_or_query:
# This may require advanced logic if your IDs differ from labels.
# We'll do a naive approach: if q_or_query is substring of adjacency keys.
possible_keys = []
for nodeKey in adjacency.keys():
# e.g. nodeKey might be: 'LLM[LLM Agent 🤖\nExtract Info]'
# we'll check if q_or_query is substring ignoring spaces
simplified_key = nodeKey.replace("\\n", " ").replace("[", "").replace("]", "").lower()
simplified_query = q_or_query.lower().replace("%20", " ")
if simplified_query in simplified_key:
possible_keys.append(nodeKey)
if possible_keys:
chosen_node = possible_keys[0]
st.info(f"Chosen node for subgraph: {chosen_node}")
sub_edges = bfs_subgraph(adjacency, chosen_node, depth=1)
if sub_edges:
sub_mermaid = create_subgraph_mermaid(sub_edges, chosen_node)
partial_subgraph_html = generate_mermaid_html(sub_mermaid)
else:
st.warning("No adjacency node matched the query param's text. Subgraph is empty.")
# 5) Show partial subgraph top-center if we have any
if partial_subgraph_html:
st.subheader("SearchResult Subgraph")
components.html(partial_subgraph_html, height=300, scrolling=False)
# 6) Render the top-centered *full* diagram
st.title("Full Mermaid Diagram (with Base URL + model=1 logic)")
diagram_html = generate_mermaid_html(final_mermaid)
components.html(diagram_html, height=400, scrolling=True)
# 7) Editor columns: Markdown & Mermaid
left_col, right_col = st.columns(2)
with left_col:
st.subheader("Markdown Side 📝")
if "markdown_text" not in st.session_state:
st.session_state["markdown_text"] = "## Hello!\nYou can type some *Markdown* here.\n"
markdown_text = st.text_area(
"Edit Markdown:",
value=st.session_state["markdown_text"],
height=300
)
st.session_state["markdown_text"] = markdown_text
# Buttons
colA, colB = st.columns(2)
with colA:
if st.button("🔄 Refresh Markdown"):
st.write("**Markdown** content refreshed! 🍿")
with colB:
if st.button("❌ Clear Markdown"):
st.session_state["markdown_text"] = ""
st.rerun()
st.markdown("---")
st.markdown("**Preview:**")
st.markdown(markdown_text)
with right_col:
st.subheader("Mermaid Side 🧜‍♂️")
if "current_mermaid" not in st.session_state:
st.session_state["current_mermaid"] = final_mermaid
# Let user see the final code we built
mermaid_input = st.text_area(
"Edit Mermaid Code:",
value=st.session_state["current_mermaid"],
height=300
)
colC, colD = st.columns(2)
with colC:
if st.button("🎨 Refresh Diagram"):
st.session_state["current_mermaid"] = mermaid_input
st.write("**Mermaid** diagram refreshed! 🌈")
st.rerun()
with colD:
if st.button("❌ Clear Mermaid"):
st.session_state["current_mermaid"] = ""
st.rerun()
st.markdown("---")
st.markdown("**Mermaid Source:**")
st.code(mermaid_input, language="python", line_numbers=True)
# 8) Show the galleries
st.markdown("---")
st.header("Media Galleries")
num_columns_images = st.slider("Choose Number of Image Columns", 1, 15, 5, key="num_columns_images")
display_images_and_wikipedia_summaries(num_columns_images)
num_columns_video = st.slider("Choose Number of Video Columns", 1, 15, 5, key="num_columns_video")
display_videos_and_links(num_columns_video)
# 9) Possibly show extended text interface
showExtendedTextInterface = False
if showExtendedTextInterface:
# e.g. display_glossary_grid(roleplaying_glossary)
# num_columns_text = st.slider("Choose Number of Text Columns", 1, 15, 4)
# display_buttons_with_scores(num_columns_text)
pass
# 10) Render the file sidebar
FileSidebar()
# 11) Random title at bottom
titles = [
"🧠🎭 Semantic Symphonies & Episodic Encores",
"🌌🎼 AI Rhythms of Memory Lane",
"🎭🎉 Cognitive Crescendos & Neural Harmonies",
"🧠🎺 Mnemonic Melodies & Synaptic Grooves",
"🎼🎸 Straight Outta Cognition",
"🥁🎻 Jazzy Jambalaya of AI Memories",
"🏰 Semantic Soul & Episodic Essence",
"🥁🎻 The Music Of AI's Mind"
]
st.markdown(f"**{random.choice(titles)}**")
if __name__ == "__main__":
main()