Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -9,14 +9,421 @@ import zipfile
|
|
9 |
import random
|
10 |
import requests
|
11 |
import openai
|
12 |
-
|
13 |
from PIL import Image
|
14 |
from urllib.parse import quote
|
15 |
|
16 |
import streamlit as st
|
17 |
import streamlit.components.v1 as components
|
18 |
|
19 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
DEFAULT_MERMAID = r"""
|
21 |
flowchart LR
|
22 |
U((User 😎)) -- "Talk 🗣️" --> LLM[LLM Agent 🤖\nExtract Info]
|
@@ -33,17 +440,19 @@ flowchart LR
|
|
33 |
click KG "/?q=Knowledge%20Graph%20Ontology+GAR+RAG" "Open Knowledge Graph" "_blank"
|
34 |
"""
|
35 |
|
|
|
|
|
|
|
|
|
36 |
def parse_mermaid_edges(mermaid_text: str):
|
37 |
"""
|
38 |
🍿 parse_mermaid_edges:
|
39 |
-
- Find lines like
|
40 |
-
- Return adjacency dict: edges[A] = [(label, B), ...]
|
41 |
"""
|
42 |
adjacency = {}
|
43 |
-
#
|
44 |
edge_pattern = re.compile(r'(\S+)\s*--\s*"([^"]*)"\s*-->\s*(\S+)')
|
45 |
-
|
46 |
-
# We split the text into lines and search for edges
|
47 |
for line in mermaid_text.split('\n'):
|
48 |
match = edge_pattern.search(line.strip())
|
49 |
if match:
|
@@ -51,132 +460,228 @@ def parse_mermaid_edges(mermaid_text: str):
|
|
51 |
if nodeA not in adjacency:
|
52 |
adjacency[nodeA] = []
|
53 |
adjacency[nodeA].append((label, nodeB))
|
54 |
-
|
55 |
return adjacency
|
56 |
|
57 |
-
def
|
58 |
"""
|
59 |
-
🍎
|
60 |
-
-
|
61 |
-
-
|
62 |
-
- If
|
63 |
"""
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
# For each edge out of start_node, store it in sub_edges
|
70 |
-
for label, child in adjacency[start_node]:
|
71 |
-
sub_edges.append((start_node, label, child))
|
72 |
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
def create_subgraph_mermaid(sub_edges, start_node):
|
76 |
"""
|
77 |
🍄 create_subgraph_mermaid:
|
78 |
-
-
|
79 |
-
- Return a smaller flowchart snippet that includes them.
|
80 |
"""
|
81 |
-
# Start with the flowchart directive
|
82 |
sub_mermaid = "flowchart LR\n"
|
83 |
-
sub_mermaid += f" %% Subgraph
|
84 |
-
|
85 |
-
# For each edge, build a line: NodeA -- "Label" --> NodeB
|
86 |
for (A, label, B) in sub_edges:
|
87 |
-
# Potentially you can keep the original styles or shapes (like U((User 😎))).
|
88 |
-
# If your original code has shapes, you can store them in a dict so A-> "U((User 😎))" etc.
|
89 |
sub_mermaid += f' {A} -- "{label}" --> {B}\n'
|
90 |
-
|
91 |
-
# Optionally add a comment to show the subgraph ends
|
92 |
-
sub_mermaid += f" %% End of subgraph for {start_node}\n"
|
93 |
return sub_mermaid
|
94 |
|
95 |
-
def generate_mermaid_html(mermaid_code: str) -> str:
|
96 |
-
"""Tiny function to embed Mermaid code in HTML with a CDN."""
|
97 |
-
return f"""
|
98 |
-
<html>
|
99 |
-
<head>
|
100 |
-
<script src="https://cdn.jsdelivr.net/npm/mermaid/dist/mermaid.min.js"></script>
|
101 |
-
<style>
|
102 |
-
.centered-mermaid {{
|
103 |
-
display: flex;
|
104 |
-
justify-content: center;
|
105 |
-
margin: 20px auto;
|
106 |
-
}}
|
107 |
-
.mermaid {{
|
108 |
-
max-width: 800px;
|
109 |
-
}}
|
110 |
-
</style>
|
111 |
-
</head>
|
112 |
-
<body>
|
113 |
-
<div class="mermaid centered-mermaid">
|
114 |
-
{mermaid_code}
|
115 |
-
</div>
|
116 |
-
<script>
|
117 |
-
mermaid.initialize({{ startOnLoad: true }});
|
118 |
-
</script>
|
119 |
-
</body>
|
120 |
-
</html>
|
121 |
-
"""
|
122 |
|
|
|
|
|
|
|
123 |
def main():
|
124 |
-
st.set_page_config(page_title="
|
125 |
-
|
|
|
|
|
|
|
|
|
126 |
|
127 |
-
#
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
-
#
|
133 |
-
|
|
|
|
|
134 |
|
135 |
-
#
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
possible_keys = []
|
159 |
for nodeKey in adjacency.keys():
|
160 |
-
|
|
|
|
|
|
|
|
|
161 |
possible_keys.append(nodeKey)
|
162 |
-
|
163 |
if possible_keys:
|
164 |
chosen_node = possible_keys[0]
|
165 |
-
|
166 |
-
sub_edges =
|
167 |
if sub_edges:
|
168 |
sub_mermaid = create_subgraph_mermaid(sub_edges, chosen_node)
|
169 |
-
|
170 |
-
# Display top-centered subgraph
|
171 |
-
st.subheader(f"SearchResult Subgraph for Node: {chosen_node}")
|
172 |
-
partial_html = generate_mermaid_html(sub_mermaid)
|
173 |
-
components.html(partial_html, height=300, scrolling=False)
|
174 |
-
else:
|
175 |
-
st.warning(f"No outgoing edges from node '{chosen_node}'.")
|
176 |
else:
|
177 |
-
st.warning("No
|
178 |
-
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
|
182 |
if __name__ == "__main__":
|
|
|
9 |
import random
|
10 |
import requests
|
11 |
import openai
|
|
|
12 |
from PIL import Image
|
13 |
from urllib.parse import quote
|
14 |
|
15 |
import streamlit as st
|
16 |
import streamlit.components.v1 as components
|
17 |
|
18 |
+
# 🏰 If you do model inference via huggingface_hub
|
19 |
+
# from huggingface_hub import InferenceClient
|
20 |
+
|
21 |
+
# =====================================================================================
|
22 |
+
# 1) GLOBAL CONFIG & PLACEHOLDERS
|
23 |
+
# =====================================================================================
|
24 |
+
BASE_URL = "https://huggingface.co/spaces/awacke1/MermaidMarkdownDiagramEditor"
|
25 |
+
|
26 |
+
PromptPrefix = "AI-Search: "
|
27 |
+
PromptPrefix2 = "AI-Refine: "
|
28 |
+
PromptPrefix3 = "AI-JS: "
|
29 |
+
|
30 |
+
roleplaying_glossary = {
|
31 |
+
"Core Rulebooks": {
|
32 |
+
"Dungeons and Dragons": ["Player's Handbook", "Dungeon Master's Guide", "Monster Manual"],
|
33 |
+
"GURPS": ["Basic Set Characters", "Basic Set Campaigns"]
|
34 |
+
},
|
35 |
+
"Campaigns & Adventures": {
|
36 |
+
"Pathfinder": ["Rise of the Runelords", "Curse of the Crimson Throne"]
|
37 |
+
}
|
38 |
+
}
|
39 |
+
|
40 |
+
transhuman_glossary = {
|
41 |
+
"Neural Interfaces": ["Cortex Jack", "Mind-Machine Fusion"],
|
42 |
+
"Cybernetics": ["Robotic Limbs", "Augmented Eyes"],
|
43 |
+
}
|
44 |
+
|
45 |
+
def process_text(text):
|
46 |
+
"""🕵️ process_text: detective style—prints lines to Streamlit for debugging."""
|
47 |
+
st.write(f"process_text called with: {text}")
|
48 |
+
|
49 |
+
def search_arxiv(text):
|
50 |
+
"""🔭 search_arxiv: pretend to search ArXiv, just prints debug for now."""
|
51 |
+
st.write(f"search_arxiv called with: {text}")
|
52 |
+
|
53 |
+
def SpeechSynthesis(text):
|
54 |
+
"""🗣 SpeechSynthesis: read lines out loud? Here, we log them for demonstration."""
|
55 |
+
st.write(f"SpeechSynthesis called with: {text}")
|
56 |
+
|
57 |
+
def process_image(image_file, prompt):
|
58 |
+
"""📷 process_image: imagine an AI pipeline for images, here we just log."""
|
59 |
+
return f"[process_image placeholder] {image_file} => {prompt}"
|
60 |
+
|
61 |
+
def process_video(video_file, seconds_per_frame):
|
62 |
+
"""🎞 process_video: placeholder for video tasks, logs to Streamlit."""
|
63 |
+
st.write(f"[process_video placeholder] {video_file}, {seconds_per_frame} sec/frame")
|
64 |
+
|
65 |
+
API_URL = "https://huggingface-inference-endpoint-placeholder"
|
66 |
+
API_KEY = "hf_XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
|
67 |
+
|
68 |
+
@st.cache_resource
|
69 |
+
def InferenceLLM(prompt):
|
70 |
+
"""🔮 InferenceLLM: a stub returning a mock response for 'prompt'."""
|
71 |
+
return f"[InferenceLLM placeholder response to prompt: {prompt}]"
|
72 |
+
|
73 |
+
|
74 |
+
# =====================================================================================
|
75 |
+
# 2) GLOSSARY & FILE UTILITY
|
76 |
+
# =====================================================================================
|
77 |
+
@st.cache_resource
|
78 |
+
def display_glossary_entity(k):
|
79 |
+
"""
|
80 |
+
Creates multiple link emojis for a single entity.
|
81 |
+
Each link might point to /?q=..., /?q=<prefix>..., or external sites.
|
82 |
+
"""
|
83 |
+
search_urls = {
|
84 |
+
"🚀🌌ArXiv": lambda x: f"/?q={quote(x)}",
|
85 |
+
"🃏Analyst": lambda x: f"/?q={quote(x)}-{quote(PromptPrefix)}",
|
86 |
+
"📚PyCoder": lambda x: f"/?q={quote(x)}-{quote(PromptPrefix2)}",
|
87 |
+
"🔬JSCoder": lambda x: f"/?q={quote(x)}-{quote(PromptPrefix3)}",
|
88 |
+
"📖": lambda x: f"https://en.wikipedia.org/wiki/{quote(x)}",
|
89 |
+
"🔍": lambda x: f"https://www.google.com/search?q={quote(x)}",
|
90 |
+
"🔎": lambda x: f"https://www.bing.com/search?q={quote(x)}",
|
91 |
+
"🎥": lambda x: f"https://www.youtube.com/results?search_query={quote(x)}",
|
92 |
+
"🐦": lambda x: f"https://twitter.com/search?q={quote(x)}",
|
93 |
+
}
|
94 |
+
links_md = ' '.join([f"[{emoji}]({url(k)})" for emoji, url in search_urls.items()])
|
95 |
+
st.markdown(f"**{k}** <small>{links_md}</small>", unsafe_allow_html=True)
|
96 |
+
|
97 |
+
def display_content_or_image(query):
|
98 |
+
"""
|
99 |
+
If 'query' is in transhuman_glossary or there's an image matching 'images/<query>.png',
|
100 |
+
we show it. Otherwise warn.
|
101 |
+
"""
|
102 |
+
for category, term_list in transhuman_glossary.items():
|
103 |
+
for term in term_list:
|
104 |
+
if query.lower() in term.lower():
|
105 |
+
st.subheader(f"Found in {category}:")
|
106 |
+
st.write(term)
|
107 |
+
return True
|
108 |
+
image_path = f"images/{query}.png"
|
109 |
+
if os.path.exists(image_path):
|
110 |
+
st.image(image_path, caption=f"Image for {query}")
|
111 |
+
return True
|
112 |
+
st.warning("No matching content or image found.")
|
113 |
+
return False
|
114 |
+
|
115 |
+
def clear_query_params():
|
116 |
+
"""For fully clearing, you'd do a redirect or st.experimental_set_query_params()."""
|
117 |
+
st.warning("Define a redirect or link without query params if you want to truly clear them.")
|
118 |
+
|
119 |
+
|
120 |
+
# =====================================================================================
|
121 |
+
# 3) FILE-HANDLING (MD files, etc.)
|
122 |
+
# =====================================================================================
|
123 |
+
def load_file(file_path):
|
124 |
+
"""Load file contents as UTF-8 text, or return empty on error."""
|
125 |
+
try:
|
126 |
+
with open(file_path, "r", encoding='utf-8') as f:
|
127 |
+
return f.read()
|
128 |
+
except:
|
129 |
+
return ""
|
130 |
+
|
131 |
+
@st.cache_resource
|
132 |
+
def create_zip_of_files(files):
|
133 |
+
"""Combine multiple local files into a single .zip for user to download."""
|
134 |
+
zip_name = "Arxiv-Paper-Search-QA-RAG-Streamlit-Gradio-AP.zip"
|
135 |
+
with zipfile.ZipFile(zip_name, 'w') as zipf:
|
136 |
+
for file in files:
|
137 |
+
zipf.write(file)
|
138 |
+
return zip_name
|
139 |
+
|
140 |
+
@st.cache_resource
|
141 |
+
def get_zip_download_link(zip_file):
|
142 |
+
"""Return an <a> link to download the given zip_file (base64-encoded)."""
|
143 |
+
with open(zip_file, 'rb') as f:
|
144 |
+
data = f.read()
|
145 |
+
b64 = base64.b64encode(data).decode()
|
146 |
+
return f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
|
147 |
+
|
148 |
+
def get_table_download_link(file_path):
|
149 |
+
"""
|
150 |
+
Creates a download link for a single file from your snippet.
|
151 |
+
Encodes it as base64 data.
|
152 |
+
"""
|
153 |
+
try:
|
154 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
155 |
+
data = file.read()
|
156 |
+
b64 = base64.b64encode(data.encode()).decode()
|
157 |
+
file_name = os.path.basename(file_path)
|
158 |
+
ext = os.path.splitext(file_name)[1]
|
159 |
+
mime_map = {
|
160 |
+
'.txt': 'text/plain',
|
161 |
+
'.py': 'text/plain',
|
162 |
+
'.xlsx': 'text/plain',
|
163 |
+
'.csv': 'text/plain',
|
164 |
+
'.htm': 'text/html',
|
165 |
+
'.md': 'text/markdown',
|
166 |
+
'.wav': 'audio/wav'
|
167 |
+
}
|
168 |
+
mime_type = mime_map.get(ext, 'application/octet-stream')
|
169 |
+
return f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
|
170 |
+
except:
|
171 |
+
return ''
|
172 |
+
|
173 |
+
def get_file_size(file_path):
|
174 |
+
"""Get file size in bytes."""
|
175 |
+
return os.path.getsize(file_path)
|
176 |
+
|
177 |
+
def FileSidebar():
|
178 |
+
"""
|
179 |
+
Renders .md files in the sidebar with open/view/run/delete logic.
|
180 |
+
"""
|
181 |
+
all_files = glob.glob("*.md")
|
182 |
+
# If you want to filter out short-named or special files:
|
183 |
+
all_files = [f for f in all_files if len(os.path.splitext(f)[0]) >= 5]
|
184 |
+
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True)
|
185 |
+
|
186 |
+
# Buttons for "Delete All" and "Download"
|
187 |
+
Files1, Files2 = st.sidebar.columns(2)
|
188 |
+
with Files1:
|
189 |
+
if st.button("🗑 Delete All"):
|
190 |
+
for file in all_files:
|
191 |
+
os.remove(file)
|
192 |
+
st.rerun()
|
193 |
+
with Files2:
|
194 |
+
if st.button("⬇️ Download"):
|
195 |
+
zip_file = create_zip_of_files(all_files)
|
196 |
+
st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True)
|
197 |
+
|
198 |
+
file_contents = ''
|
199 |
+
file_name = ''
|
200 |
+
next_action = ''
|
201 |
+
|
202 |
+
# Each file row
|
203 |
+
for file in all_files:
|
204 |
+
col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1])
|
205 |
+
with col1:
|
206 |
+
if st.button("🌐", key="md_"+file):
|
207 |
+
file_contents = load_file(file)
|
208 |
+
file_name = file
|
209 |
+
next_action = 'md'
|
210 |
+
st.session_state['next_action'] = next_action
|
211 |
+
with col2:
|
212 |
+
st.markdown(get_table_download_link(file), unsafe_allow_html=True)
|
213 |
+
with col3:
|
214 |
+
if st.button("📂", key="open_"+file):
|
215 |
+
file_contents = load_file(file)
|
216 |
+
file_name = file
|
217 |
+
next_action = 'open'
|
218 |
+
st.session_state['lastfilename'] = file
|
219 |
+
st.session_state['filename'] = file
|
220 |
+
st.session_state['filetext'] = file_contents
|
221 |
+
st.session_state['next_action'] = next_action
|
222 |
+
with col4:
|
223 |
+
if st.button("▶️", key="read_"+file):
|
224 |
+
file_contents = load_file(file)
|
225 |
+
file_name = file
|
226 |
+
next_action = 'search'
|
227 |
+
st.session_state['next_action'] = next_action
|
228 |
+
with col5:
|
229 |
+
if st.button("🗑", key="delete_"+file):
|
230 |
+
os.remove(file)
|
231 |
+
st.rerun()
|
232 |
+
|
233 |
+
if file_contents:
|
234 |
+
if next_action == 'open':
|
235 |
+
open1, open2 = st.columns([0.8, 0.2])
|
236 |
+
with open1:
|
237 |
+
file_name_input = st.text_input('File Name:', file_name, key='file_name_input')
|
238 |
+
file_content_area = st.text_area('File Contents:', file_contents, height=300, key='file_content_area')
|
239 |
+
|
240 |
+
if st.button('💾 Save File'):
|
241 |
+
with open(file_name_input, 'w', encoding='utf-8') as f:
|
242 |
+
f.write(file_content_area)
|
243 |
+
st.markdown(f'Saved {file_name_input} successfully.')
|
244 |
+
|
245 |
+
elif next_action == 'search':
|
246 |
+
file_content_area = st.text_area("File Contents:", file_contents, height=500)
|
247 |
+
user_prompt = PromptPrefix2 + file_contents
|
248 |
+
st.markdown(user_prompt)
|
249 |
+
if st.button('🔍Re-Code'):
|
250 |
+
search_arxiv(file_contents)
|
251 |
+
|
252 |
+
elif next_action == 'md':
|
253 |
+
st.markdown(file_contents)
|
254 |
+
SpeechSynthesis(file_contents)
|
255 |
+
if st.button("🔍Run"):
|
256 |
+
st.write("Running GPT logic placeholder...")
|
257 |
+
|
258 |
+
# =====================================================================================
|
259 |
+
# 4) SCORING / GLOSSARIES
|
260 |
+
# =====================================================================================
|
261 |
+
score_dir = "scores"
|
262 |
+
os.makedirs(score_dir, exist_ok=True)
|
263 |
+
|
264 |
+
def generate_key(label, header, idx):
|
265 |
+
return f"{header}_{label}_{idx}_key"
|
266 |
+
|
267 |
+
def update_score(key, increment=1):
|
268 |
+
"""Increment the 'score' for a glossary item in JSON storage."""
|
269 |
+
score_file = os.path.join(score_dir, f"{key}.json")
|
270 |
+
if os.path.exists(score_file):
|
271 |
+
with open(score_file, "r") as file:
|
272 |
+
score_data = json.load(file)
|
273 |
+
else:
|
274 |
+
score_data = {"clicks": 0, "score": 0}
|
275 |
+
score_data["clicks"] += increment
|
276 |
+
score_data["score"] += increment
|
277 |
+
with open(score_file, "w") as file:
|
278 |
+
json.dump(score_data, file)
|
279 |
+
return score_data["score"]
|
280 |
+
|
281 |
+
def load_score(key):
|
282 |
+
"""Load the stored score from .json if it exists, else 0."""
|
283 |
+
file_path = os.path.join(score_dir, f"{key}.json")
|
284 |
+
if os.path.exists(file_path):
|
285 |
+
with open(file_path, "r") as file:
|
286 |
+
score_data = json.load(file)
|
287 |
+
return score_data["score"]
|
288 |
+
return 0
|
289 |
+
|
290 |
+
def display_buttons_with_scores(num_columns_text):
|
291 |
+
"""
|
292 |
+
Show glossary items as clickable buttons, each increments a 'score'.
|
293 |
+
"""
|
294 |
+
game_emojis = {
|
295 |
+
"Dungeons and Dragons": "🐉",
|
296 |
+
"Call of Cthulhu": "🐙",
|
297 |
+
"GURPS": "🎲",
|
298 |
+
"Pathfinder": "🗺️",
|
299 |
+
"Kindred of the East": "🌅",
|
300 |
+
"Changeling": "🍃",
|
301 |
+
}
|
302 |
+
topic_emojis = {
|
303 |
+
"Core Rulebooks": "📚",
|
304 |
+
"Maps & Settings": "🗺️",
|
305 |
+
"Game Mechanics & Tools": "⚙️",
|
306 |
+
"Monsters & Adversaries": "👹",
|
307 |
+
"Campaigns & Adventures": "📜",
|
308 |
+
"Creatives & Assets": "🎨",
|
309 |
+
"Game Master Resources": "🛠️",
|
310 |
+
"Lore & Background": "📖",
|
311 |
+
"Character Development": "🧍",
|
312 |
+
"Homebrew Content": "🔧",
|
313 |
+
"General Topics": "🌍",
|
314 |
+
}
|
315 |
+
|
316 |
+
for category, games in roleplaying_glossary.items():
|
317 |
+
category_emoji = topic_emojis.get(category, "🔍")
|
318 |
+
st.markdown(f"## {category_emoji} {category}")
|
319 |
+
for game, terms in games.items():
|
320 |
+
game_emoji = game_emojis.get(game, "🎮")
|
321 |
+
for term in terms:
|
322 |
+
key = f"{category}_{game}_{term}".replace(' ', '_').lower()
|
323 |
+
score_val = load_score(key)
|
324 |
+
if st.button(f"{game_emoji} {category} {game} {term} {score_val}", key=key):
|
325 |
+
newscore = update_score(key.replace('?', ''))
|
326 |
+
st.markdown(f"Scored **{category} - {game} - {term}** -> {newscore}")
|
327 |
+
|
328 |
+
# =====================================================================================
|
329 |
+
# 5) IMAGES & VIDEOS
|
330 |
+
# =====================================================================================
|
331 |
+
def display_images_and_wikipedia_summaries(num_columns=4):
|
332 |
+
"""Display .png images in a grid, referencing the name as a 'keyword'."""
|
333 |
+
image_files = [f for f in os.listdir('.') if f.endswith('.png')]
|
334 |
+
if not image_files:
|
335 |
+
st.write("No PNG images found in the current directory.")
|
336 |
+
return
|
337 |
+
|
338 |
+
image_files_sorted = sorted(image_files, key=lambda x: len(x.split('.')[0]))
|
339 |
+
cols = st.columns(num_columns)
|
340 |
+
col_index = 0
|
341 |
+
|
342 |
+
for image_file in image_files_sorted:
|
343 |
+
with cols[col_index % num_columns]:
|
344 |
+
try:
|
345 |
+
image = Image.open(image_file)
|
346 |
+
st.image(image, use_column_width=True)
|
347 |
+
k = image_file.split('.')[0]
|
348 |
+
display_glossary_entity(k)
|
349 |
+
image_text_input = st.text_input(f"Prompt for {image_file}", key=f"image_prompt_{image_file}")
|
350 |
+
if image_text_input:
|
351 |
+
response = process_image(image_file, image_text_input)
|
352 |
+
st.markdown(response)
|
353 |
+
except:
|
354 |
+
st.write(f"Could not open {image_file}")
|
355 |
+
col_index += 1
|
356 |
+
|
357 |
+
def display_videos_and_links(num_columns=4):
|
358 |
+
"""Displays all .mp4/.webm in a grid, plus text input for prompts."""
|
359 |
+
video_files = [f for f in os.listdir('.') if f.endswith(('.mp4', '.webm'))]
|
360 |
+
if not video_files:
|
361 |
+
st.write("No MP4 or WEBM videos found in the current directory.")
|
362 |
+
return
|
363 |
+
|
364 |
+
video_files_sorted = sorted(video_files, key=lambda x: len(x.split('.')[0]))
|
365 |
+
cols = st.columns(num_columns)
|
366 |
+
col_index = 0
|
367 |
+
|
368 |
+
for video_file in video_files_sorted:
|
369 |
+
with cols[col_index % num_columns]:
|
370 |
+
k = video_file.split('.')[0]
|
371 |
+
st.video(video_file, format='video/mp4', start_time=0)
|
372 |
+
display_glossary_entity(k)
|
373 |
+
video_text_input = st.text_input(f"Video Prompt for {video_file}", key=f"video_prompt_{video_file}")
|
374 |
+
if video_text_input:
|
375 |
+
try:
|
376 |
+
seconds_per_frame = 10
|
377 |
+
process_video(video_file, seconds_per_frame)
|
378 |
+
except ValueError:
|
379 |
+
st.error("Invalid input for seconds per frame!")
|
380 |
+
col_index += 1
|
381 |
+
|
382 |
+
# =====================================================================================
|
383 |
+
# 6) MERMAID & PARTIAL SUBGRAPH LOGIC
|
384 |
+
# =====================================================================================
|
385 |
+
def generate_mermaid_html(mermaid_code: str) -> str:
|
386 |
+
"""Embed mermaid_code in a minimal HTML snippet, centered."""
|
387 |
+
return f"""
|
388 |
+
<html>
|
389 |
+
<head>
|
390 |
+
<script src="https://cdn.jsdelivr.net/npm/mermaid/dist/mermaid.min.js"></script>
|
391 |
+
<style>
|
392 |
+
.centered-mermaid {{
|
393 |
+
display: flex;
|
394 |
+
justify-content: center;
|
395 |
+
margin: 20px auto;
|
396 |
+
}}
|
397 |
+
.mermaid {{
|
398 |
+
max-width: 800px;
|
399 |
+
}}
|
400 |
+
</style>
|
401 |
+
</head>
|
402 |
+
<body>
|
403 |
+
<div class="mermaid centered-mermaid">
|
404 |
+
{mermaid_code}
|
405 |
+
</div>
|
406 |
+
<script>
|
407 |
+
mermaid.initialize({{ startOnLoad: true }});
|
408 |
+
</script>
|
409 |
+
</body>
|
410 |
+
</html>
|
411 |
+
"""
|
412 |
+
|
413 |
+
def append_model_param(url: str, model_selected: bool) -> str:
|
414 |
+
"""If user selects 'model=1', we append &model=1 or ?model=1 if not present."""
|
415 |
+
if not model_selected:
|
416 |
+
return url
|
417 |
+
delimiter = "&" if "?" in url else "?"
|
418 |
+
return f"{url}{delimiter}model=1"
|
419 |
+
|
420 |
+
def inject_base_url(url: str) -> str:
|
421 |
+
"""If link doesn't start with 'http', prepend BASE_URL so it's absolute."""
|
422 |
+
if url.startswith("http"):
|
423 |
+
return url
|
424 |
+
return f"{BASE_URL}{url}"
|
425 |
+
|
426 |
+
# We'll keep the default mermaid that references /?q=...
|
427 |
DEFAULT_MERMAID = r"""
|
428 |
flowchart LR
|
429 |
U((User 😎)) -- "Talk 🗣️" --> LLM[LLM Agent 🤖\nExtract Info]
|
|
|
440 |
click KG "/?q=Knowledge%20Graph%20Ontology+GAR+RAG" "Open Knowledge Graph" "_blank"
|
441 |
"""
|
442 |
|
443 |
+
# ------------------------------------------------------------------------------------
|
444 |
+
# 🍁 Parsing and building partial subgraphs from lines like "A -- Label --> B"
|
445 |
+
# We'll do BFS so we can gather multiple downstream levels if we want.
|
446 |
+
# ------------------------------------------------------------------------------------
|
447 |
def parse_mermaid_edges(mermaid_text: str):
|
448 |
"""
|
449 |
🍿 parse_mermaid_edges:
|
450 |
+
- Find lines like: A -- "Label" --> B
|
451 |
+
- Return adjacency dict: edges[A] = [(label, B), ...]
|
452 |
"""
|
453 |
adjacency = {}
|
454 |
+
# e.g. U((User 😎)) -- "Talk 🗣️" --> LLM[LLM Agent 🤖\nExtract Info]
|
455 |
edge_pattern = re.compile(r'(\S+)\s*--\s*"([^"]*)"\s*-->\s*(\S+)')
|
|
|
|
|
456 |
for line in mermaid_text.split('\n'):
|
457 |
match = edge_pattern.search(line.strip())
|
458 |
if match:
|
|
|
460 |
if nodeA not in adjacency:
|
461 |
adjacency[nodeA] = []
|
462 |
adjacency[nodeA].append((label, nodeB))
|
|
|
463 |
return adjacency
|
464 |
|
465 |
+
def bfs_subgraph(adjacency, start_node, depth=1):
|
466 |
"""
|
467 |
+
🍎 bfs_subgraph:
|
468 |
+
- Gather edges up to 'depth' levels from start_node
|
469 |
+
- If depth=1, only direct edges from node
|
470 |
+
- If depth=2, child and grandchild, etc.
|
471 |
"""
|
472 |
+
from collections import deque
|
473 |
+
visited = set()
|
474 |
+
queue = deque([(start_node, 0)])
|
475 |
+
edges = []
|
|
|
|
|
|
|
|
|
476 |
|
477 |
+
while queue:
|
478 |
+
current, lvl = queue.popleft()
|
479 |
+
if current in visited:
|
480 |
+
continue
|
481 |
+
visited.add(current)
|
482 |
+
|
483 |
+
if current in adjacency and lvl < depth:
|
484 |
+
for (label, child) in adjacency[current]:
|
485 |
+
edges.append((current, label, child))
|
486 |
+
queue.append((child, lvl + 1))
|
487 |
+
|
488 |
+
return edges
|
489 |
|
490 |
def create_subgraph_mermaid(sub_edges, start_node):
|
491 |
"""
|
492 |
🍄 create_subgraph_mermaid:
|
493 |
+
- build a smaller flowchart snippet with edges from BFS
|
|
|
494 |
"""
|
|
|
495 |
sub_mermaid = "flowchart LR\n"
|
496 |
+
sub_mermaid += f" %% SearchResult Subgraph starting at {start_node}\n"
|
|
|
|
|
497 |
for (A, label, B) in sub_edges:
|
|
|
|
|
498 |
sub_mermaid += f' {A} -- "{label}" --> {B}\n'
|
499 |
+
sub_mermaid += " %% End of partial subgraph\n"
|
|
|
|
|
500 |
return sub_mermaid
|
501 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
502 |
|
503 |
+
# =====================================================================================
|
504 |
+
# 7) MAIN APP
|
505 |
+
# =====================================================================================
|
506 |
def main():
|
507 |
+
st.set_page_config(page_title="Mermaid + BFS Subgraph + Full Logic", layout="wide")
|
508 |
+
|
509 |
+
# 1) Query param parsing
|
510 |
+
query_params = st.query_params
|
511 |
+
query_list = (query_params.get('q') or query_params.get('query') or [''])
|
512 |
+
q_or_query = query_list[0].strip() if len(query_list) > 0 else ""
|
513 |
|
514 |
+
# If 'action' param is present
|
515 |
+
if 'action' in query_params:
|
516 |
+
action_list = query_params['action']
|
517 |
+
if action_list:
|
518 |
+
action = action_list[0]
|
519 |
+
if action == 'show_message':
|
520 |
+
st.success("Showing a message because 'action=show_message' was found in the URL.")
|
521 |
+
elif action == 'clear':
|
522 |
+
clear_query_params()
|
523 |
|
524 |
+
# If there's a 'query=' param, display content or image
|
525 |
+
if 'query' in query_params:
|
526 |
+
query_val = query_params['query'][0]
|
527 |
+
display_content_or_image(query_val)
|
528 |
|
529 |
+
# 2) Let user pick ?model=1
|
530 |
+
st.sidebar.write("## Diagram Link Settings")
|
531 |
+
model_selected = st.sidebar.checkbox("Append ?model=1 to each link?")
|
532 |
+
|
533 |
+
# 3) We'll parse adjacency from DEFAULT_MERMAID, then do the injection for base URL
|
534 |
+
# and possible model param. We'll store the final mermaid code in session.
|
535 |
+
lines = DEFAULT_MERMAID.strip().split("\n")
|
536 |
+
new_lines = []
|
537 |
+
for line in lines:
|
538 |
+
if "click " in line and '"/?' in line:
|
539 |
+
# try to parse out the URL
|
540 |
+
parts = re.split(r'click\s+\S+\s+"([^"]+)"\s+"([^"]+)"\s+"([^"]+)"', line)
|
541 |
+
# For example: parts might be [prefix, '/?q=User%20😎', 'Open User 😎', '_blank', remainder?]
|
542 |
+
if len(parts) == 5:
|
543 |
+
# Reassemble with base URL + optional model param
|
544 |
+
old_url = parts[1]
|
545 |
+
tooltip = parts[2]
|
546 |
+
target = parts[3]
|
547 |
+
# 1) base
|
548 |
+
new_url = inject_base_url(old_url)
|
549 |
+
# 2) model param
|
550 |
+
new_url = append_model_param(new_url, model_selected)
|
551 |
+
|
552 |
+
new_line = f"{parts[0]}\"{new_url}\" \"{tooltip}\" \"{target}\"{parts[4]}"
|
553 |
+
new_lines.append(new_line)
|
554 |
+
else:
|
555 |
+
new_lines.append(line)
|
556 |
+
else:
|
557 |
+
new_lines.append(line)
|
558 |
+
|
559 |
+
final_mermaid = "\n".join(new_lines)
|
560 |
+
adjacency = parse_mermaid_edges(final_mermaid)
|
561 |
+
|
562 |
+
# 4) If user clicked a shape -> we show a partial subgraph as "SearchResult"
|
563 |
+
# We'll do BFS with depth=1 or 2 for demonstration:
|
564 |
+
partial_subgraph_html = ""
|
565 |
+
if q_or_query:
|
566 |
+
st.info(f"process_text called with: {PromptPrefix}{q_or_query}")
|
567 |
+
# Attempt to find a node whose ID or label includes q_or_query:
|
568 |
+
# This may require advanced logic if your IDs differ from labels.
|
569 |
+
# We'll do a naive approach: if q_or_query is substring of adjacency keys.
|
570 |
possible_keys = []
|
571 |
for nodeKey in adjacency.keys():
|
572 |
+
# e.g. nodeKey might be: 'LLM[LLM Agent 🤖\nExtract Info]'
|
573 |
+
# we'll check if q_or_query is substring ignoring spaces
|
574 |
+
simplified_key = nodeKey.replace("\\n", " ").replace("[", "").replace("]", "").lower()
|
575 |
+
simplified_query = q_or_query.lower().replace("%20", " ")
|
576 |
+
if simplified_query in simplified_key:
|
577 |
possible_keys.append(nodeKey)
|
578 |
+
|
579 |
if possible_keys:
|
580 |
chosen_node = possible_keys[0]
|
581 |
+
st.info(f"Chosen node for subgraph: {chosen_node}")
|
582 |
+
sub_edges = bfs_subgraph(adjacency, chosen_node, depth=1)
|
583 |
if sub_edges:
|
584 |
sub_mermaid = create_subgraph_mermaid(sub_edges, chosen_node)
|
585 |
+
partial_subgraph_html = generate_mermaid_html(sub_mermaid)
|
|
|
|
|
|
|
|
|
|
|
|
|
586 |
else:
|
587 |
+
st.warning("No adjacency node matched the query param's text. Subgraph is empty.")
|
588 |
+
|
589 |
+
# 5) Show partial subgraph top-center if we have any
|
590 |
+
if partial_subgraph_html:
|
591 |
+
st.subheader("SearchResult Subgraph")
|
592 |
+
components.html(partial_subgraph_html, height=300, scrolling=False)
|
593 |
+
|
594 |
+
# 6) Render the top-centered *full* diagram
|
595 |
+
st.title("Full Mermaid Diagram (with Base URL + model=1 logic)")
|
596 |
+
diagram_html = generate_mermaid_html(final_mermaid)
|
597 |
+
components.html(diagram_html, height=400, scrolling=True)
|
598 |
+
|
599 |
+
# 7) Editor columns: Markdown & Mermaid
|
600 |
+
left_col, right_col = st.columns(2)
|
601 |
+
|
602 |
+
with left_col:
|
603 |
+
st.subheader("Markdown Side 📝")
|
604 |
+
if "markdown_text" not in st.session_state:
|
605 |
+
st.session_state["markdown_text"] = "## Hello!\nYou can type some *Markdown* here.\n"
|
606 |
+
markdown_text = st.text_area(
|
607 |
+
"Edit Markdown:",
|
608 |
+
value=st.session_state["markdown_text"],
|
609 |
+
height=300
|
610 |
+
)
|
611 |
+
st.session_state["markdown_text"] = markdown_text
|
612 |
+
|
613 |
+
# Buttons
|
614 |
+
colA, colB = st.columns(2)
|
615 |
+
with colA:
|
616 |
+
if st.button("🔄 Refresh Markdown"):
|
617 |
+
st.write("**Markdown** content refreshed! 🍿")
|
618 |
+
with colB:
|
619 |
+
if st.button("❌ Clear Markdown"):
|
620 |
+
st.session_state["markdown_text"] = ""
|
621 |
+
st.rerun()
|
622 |
+
|
623 |
+
st.markdown("---")
|
624 |
+
st.markdown("**Preview:**")
|
625 |
+
st.markdown(markdown_text)
|
626 |
+
|
627 |
+
with right_col:
|
628 |
+
st.subheader("Mermaid Side 🧜♂️")
|
629 |
+
if "current_mermaid" not in st.session_state:
|
630 |
+
st.session_state["current_mermaid"] = final_mermaid
|
631 |
+
|
632 |
+
# Let user see the final code we built
|
633 |
+
mermaid_input = st.text_area(
|
634 |
+
"Edit Mermaid Code:",
|
635 |
+
value=st.session_state["current_mermaid"],
|
636 |
+
height=300
|
637 |
+
)
|
638 |
+
colC, colD = st.columns(2)
|
639 |
+
with colC:
|
640 |
+
if st.button("🎨 Refresh Diagram"):
|
641 |
+
st.session_state["current_mermaid"] = mermaid_input
|
642 |
+
st.write("**Mermaid** diagram refreshed! 🌈")
|
643 |
+
st.rerun()
|
644 |
+
with colD:
|
645 |
+
if st.button("❌ Clear Mermaid"):
|
646 |
+
st.session_state["current_mermaid"] = ""
|
647 |
+
st.rerun()
|
648 |
+
|
649 |
+
st.markdown("---")
|
650 |
+
st.markdown("**Mermaid Source:**")
|
651 |
+
st.code(mermaid_input, language="python", line_numbers=True)
|
652 |
+
|
653 |
+
# 8) Show the galleries
|
654 |
+
st.markdown("---")
|
655 |
+
st.header("Media Galleries")
|
656 |
+
num_columns_images = st.slider("Choose Number of Image Columns", 1, 15, 5, key="num_columns_images")
|
657 |
+
display_images_and_wikipedia_summaries(num_columns_images)
|
658 |
+
|
659 |
+
num_columns_video = st.slider("Choose Number of Video Columns", 1, 15, 5, key="num_columns_video")
|
660 |
+
display_videos_and_links(num_columns_video)
|
661 |
+
|
662 |
+
# 9) Possibly show extended text interface
|
663 |
+
showExtendedTextInterface = False
|
664 |
+
if showExtendedTextInterface:
|
665 |
+
# e.g. display_glossary_grid(roleplaying_glossary)
|
666 |
+
# num_columns_text = st.slider("Choose Number of Text Columns", 1, 15, 4)
|
667 |
+
# display_buttons_with_scores(num_columns_text)
|
668 |
+
pass
|
669 |
+
|
670 |
+
# 10) Render the file sidebar
|
671 |
+
FileSidebar()
|
672 |
+
|
673 |
+
# 11) Random title at bottom
|
674 |
+
titles = [
|
675 |
+
"🧠🎭 Semantic Symphonies & Episodic Encores",
|
676 |
+
"🌌🎼 AI Rhythms of Memory Lane",
|
677 |
+
"🎭🎉 Cognitive Crescendos & Neural Harmonies",
|
678 |
+
"🧠🎺 Mnemonic Melodies & Synaptic Grooves",
|
679 |
+
"🎼🎸 Straight Outta Cognition",
|
680 |
+
"🥁🎻 Jazzy Jambalaya of AI Memories",
|
681 |
+
"🏰 Semantic Soul & Episodic Essence",
|
682 |
+
"🥁🎻 The Music Of AI's Mind"
|
683 |
+
]
|
684 |
+
st.markdown(f"**{random.choice(titles)}**")
|
685 |
|
686 |
|
687 |
if __name__ == "__main__":
|