awacke1's picture
Update app.py
8c120d1 verified
raw
history blame
23.1 kB
import streamlit as st
import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, time, zipfile
import plotly.graph_objects as go
import streamlit.components.v1 as components
from datetime import datetime
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import defaultdict, deque
from dotenv import load_dotenv
from gradio_client import Client
from huggingface_hub import InferenceClient
from io import BytesIO
from PIL import Image
from PyPDF2 import PdfReader
from urllib.parse import quote
from xml.etree import ElementTree as ET
from openai import OpenAI
import extra_streamlit_components as stx
from streamlit.runtime.scriptrunner import get_script_run_ctx
import asyncio
import edge_tts
# Available English voices
ENGLISH_VOICES = [
"en-US-AriaNeural", # Female, conversational
"en-US-JennyNeural", # Female, customer service
"en-US-GuyNeural", # Male, newscast
"en-US-RogerNeural", # Male, calm
"en-GB-SoniaNeural", # British female
"en-GB-RyanNeural", # British male
"en-AU-NatashaNeural", # Australian female
"en-AU-WilliamNeural", # Australian male
"en-CA-ClaraNeural", # Canadian female
"en-CA-LiamNeural", # Canadian male
"en-IE-EmilyNeural", # Irish female
"en-IE-ConnorNeural", # Irish male
"en-IN-NeerjaNeural", # Indian female
"en-IN-PrabhatNeural", # Indian male
]
# Core Configuration & Setup
st.set_page_config(
page_title="ARIA Research Assistant",
page_icon="🔬",
layout="wide",
initial_sidebar_state="auto",
menu_items={
'Get Help': 'https://huggingface.co/awacke1',
'Report a bug': 'https://huggingface.co/spaces/awacke1',
'About': "ARIA: Academic Research Interactive Assistant"
}
)
load_dotenv()
# API Setup
openai_api_key = os.getenv('OPENAI_API_KEY', st.secrets.get('OPENAI_API_KEY', ''))
anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', st.secrets.get('ANTHROPIC_API_KEY', ''))
openai_client = OpenAI(api_key=openai_api_key)
claude_client = anthropic.Anthropic(api_key=anthropic_key)
# Session State Management
if 'transcript_history' not in st.session_state:
st.session_state['transcript_history'] = []
if 'chat_history' not in st.session_state:
st.session_state['chat_history'] = []
if 'openai_model' not in st.session_state:
st.session_state['openai_model'] = "gpt-4-vision-preview"
if 'messages' not in st.session_state:
st.session_state['messages'] = []
if 'last_voice_input' not in st.session_state:
st.session_state['last_voice_input'] = ""
if 'current_audio' not in st.session_state:
st.session_state['current_audio'] = None
if 'autoplay_audio' not in st.session_state:
st.session_state['autoplay_audio'] = True
if 'should_rerun' not in st.session_state:
st.session_state['should_rerun'] = False
if 'autorun' not in st.session_state:
st.session_state.autorun = True
if 'run_option' not in st.session_state:
st.session_state.run_option = "Arxiv"
if 'last_processed_text' not in st.session_state:
st.session_state.last_processed_text = ""
# Custom CSS
st.markdown("""
<style>
.main {
background: linear-gradient(135deg, #1a1a1a, #2d2d2d);
color: #ffffff;
}
.stMarkdown {
font-family: 'Helvetica Neue', sans-serif;
}
.stButton>button {
background-color: #4CAF50;
color: white;
padding: 0.5rem 1rem;
border-radius: 5px;
border: none;
transition: background-color 0.3s;
}
.stButton>button:hover {
background-color: #45a049;
}
.audio-player {
margin: 1rem 0;
padding: 1rem;
border-radius: 10px;
background: #f5f5f5;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.voice-container {
padding: 1rem;
background: white;
border-radius: 10px;
margin: 1rem 0;
}
.text-display {
margin: 1rem 0;
padding: 1rem;
background: #f9f9f9;
border-radius: 5px;
font-size: 1.1em;
}
.model-selector {
margin: 1rem 0;
padding: 0.5rem;
background: #ffffff;
border-radius: 5px;
}
.response-container {
margin-top: 2rem;
padding: 1rem;
background: rgba(255, 255, 255, 0.05);
border-radius: 10px;
}
</style>
""", unsafe_allow_html=True)
def create_voice_component():
"""Create auto-searching voice recognition component"""
return components.html(
"""
<div style="padding: 20px; border-radius: 10px; background: #f0f2f6;">
<div id="status" style="margin-bottom: 10px; color: #666;">Starting voice recognition...</div>
<div id="interim" style="color: #666; min-height: 24px;"></div>
<div id="output" style="margin-top: 10px; padding: 10px; min-height: 100px;
background: white; border-radius: 5px; white-space: pre-wrap;"></div>
<script>
if ('webkitSpeechRecognition' in window) {
const recognition = new webkitSpeechRecognition();
recognition.continuous = true;
recognition.interimResults = true;
const status = document.getElementById('status');
const interim = document.getElementById('interim');
const output = document.getElementById('output');
let fullTranscript = '';
let lastPauseTime = Date.now();
let pauseThreshold = 1500;
window.addEventListener('load', () => {
setTimeout(() => {
try {
recognition.start();
status.textContent = 'Listening...';
} catch (e) {
console.error('Start error:', e);
status.textContent = 'Error starting recognition';
}
}, 1000);
});
recognition.onresult = (event) => {
let interimTranscript = '';
let finalTranscript = '';
for (let i = event.resultIndex; i < event.results.length; i++) {
const transcript = event.results[i][0].transcript;
if (event.results[i].isFinal) {
finalTranscript += transcript + ' ';
lastPauseTime = Date.now();
} else {
interimTranscript += transcript;
}
}
if (finalTranscript) {
fullTranscript += finalTranscript;
interim.textContent = '';
output.textContent = fullTranscript;
window.parent.postMessage({
type: 'streamlit:setComponentValue',
value: {
text: fullTranscript,
trigger: 'speech'
},
dataType: 'json',
}, '*');
} else if (interimTranscript) {
interim.textContent = '... ' + interimTranscript;
}
output.scrollTop = output.scrollHeight;
};
setInterval(() => {
if (fullTranscript && Date.now() - lastPauseTime > pauseThreshold) {
if (output.dataset.lastProcessed !== fullTranscript) {
output.dataset.lastProcessed = fullTranscript;
window.parent.postMessage({
type: 'streamlit:setComponentValue',
value: {
text: fullTranscript,
trigger: 'pause'
},
dataType: 'json',
}, '*');
}
}
}, 500);
recognition.onend = () => {
try {
recognition.start();
status.textContent = 'Listening...';
} catch (e) {
console.error('Restart error:', e);
status.textContent = 'Recognition stopped. Refresh to restart.';
}
};
recognition.onerror = (event) => {
console.error('Recognition error:', event.error);
status.textContent = 'Error: ' + event.error;
};
} else {
document.getElementById('status').textContent = 'Speech recognition not supported in this browser';
}
</script>
</div>
""",
height=200
)
def get_audio_autoplay_html(audio_path):
"""Create HTML for autoplaying audio with controls and download"""
try:
with open(audio_path, "rb") as audio_file:
audio_bytes = audio_file.read()
audio_b64 = base64.b64encode(audio_bytes).decode()
return f'''
<div class="audio-player">
<audio controls autoplay style="width: 100%;">
<source src="data:audio/mpeg;base64,{audio_b64}" type="audio/mpeg">
Your browser does not support the audio element.
</audio>
<div style="margin-top: 5px;">
<a href="data:audio/mpeg;base64,{audio_b64}"
download="{os.path.basename(audio_path)}"
style="text-decoration: none; color: #4CAF50;">
⬇️ Download Audio
</a>
</div>
</div>
'''
except Exception as e:
return f"Error loading audio: {str(e)}"
# Audio Processing Functions
def clean_for_speech(text: str) -> str:
"""Clean text for speech synthesis"""
text = text.replace("\n", " ")
text = text.replace("</s>", " ")
text = text.replace("#", "")
text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text)
text = re.sub(r"\s+", " ", text).strip()
return text
async def generate_audio(text, voice="en-US-AriaNeural", rate="+0%", pitch="+0Hz"):
"""Generate audio using Edge TTS with automatic playback"""
text = clean_for_speech(text)
if not text.strip():
return None
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_file = f"response_{timestamp}.mp3"
communicate = edge_tts.Communicate(text, voice, rate=rate, pitch=pitch)
await communicate.save(output_file)
return output_file
def render_audio_result(audio_file, title="Generated Audio"):
"""Render audio result with autoplay in Streamlit"""
if audio_file and os.path.exists(audio_file):
st.markdown(f"### {title}")
st.markdown(get_audio_autoplay_html(audio_file), unsafe_allow_html=True)
async def process_voice_search(query, voice="en-US-AriaNeural"):
"""Process voice search with automatic audio using selected voice"""
response, refs = perform_arxiv_search(query)
audio_file = await generate_audio(response, voice=voice)
st.session_state.current_audio = audio_file
return response, audio_file
# Arxiv Search Functions
def perform_arxiv_search(query):
"""Enhanced Arxiv search with summary"""
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
refs = client.predict(
query, 20, "Semantic Search",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
api_name="/update_with_rag_md"
)[0]
summary = client.predict(
query,
"mistralai/Mixtral-8x7B-Instruct-v0.1",
True,
api_name="/ask_llm"
)
response = f"### Search Results for: {query}\n\n{summary}\n\n### References\n\n{refs}"
return response, refs
def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, titles_summary=True,
full_audio=False, voice="en-US-AriaNeural"):
"""Full Arxiv search with audio summaries"""
start = time.time()
response, refs = perform_arxiv_search(q)
st.markdown(response)
# Generate audio responses
if full_audio:
audio_file = asyncio.run(generate_audio(response, voice=voice))
if audio_file:
render_audio_result(audio_file, "Complete Response")
if vocal_summary:
summary_audio = asyncio.run(generate_audio(
f"Summary of results for query: {q}",
voice=voice
))
if summary_audio:
render_audio_result(summary_audio, "Summary")
elapsed = time.time() - start
st.write(f"**Total Elapsed:** {elapsed:.2f} s")
return response
def render_search_interface():
"""Main search interface with voice recognition and model selection"""
st.header("🔍 Voice Search & Research")
# Voice and model settings
col1, col2, col3 = st.columns([2, 1, 1])
with col1:
selected_voice = st.selectbox(
"Select Voice",
ENGLISH_VOICES,
index=0,
help="Choose the voice for audio responses"
)
with col2:
run_option = st.selectbox(
"Model:",
["Arxiv", "GPT-4o", "Claude-3.5"],
key="run_option"
)
with col3:
autorun = st.checkbox("⚙ AutoRun", value=True, key="autorun")
# Voice component
voice_result = create_voice_component()
# Handle voice input with autorun
if voice_result and isinstance(voice_result, (str, dict)):
# Extract text and trigger info
if isinstance(voice_result, dict):
current_text = voice_result.get('text', '')
trigger = voice_result.get('trigger')
else:
current_text = voice_result
trigger = None
# Show text in edit box
edited_input = st.text_area(
"✏️ Edit Input:",
value=current_text,
height=100,
key="edited_input"
)
# Check if input has changed
input_changed = (edited_input != st.session_state.get('last_processed_text', ''))
# Process based on autorun and model selection
if autorun and input_changed and edited_input:
st.session_state.last_processed_text = edited_input
try:
with st.spinner("Processing..."):
if run_option == "Arxiv":
result = perform_ai_lookup(
edited_input,
vocal_summary=True,
extended_refs=False,
titles_summary=True,
full_audio=True,
voice=selected_voice
)
elif run_option == "GPT-4o":
result = process_with_gpt(edited_input)
# Generate audio for GPT response
audio_file = asyncio.run(generate_audio(result, voice=selected_voice))
if audio_file:
render_audio_result(audio_file, "GPT-4 Response")
elif run_option == "Claude-3.5":
result = process_with_claude(edited_input)
# Generate audio for Claude response
audio_file = asyncio.run(generate_audio(result, voice=selected_voice))
if audio_file:
render_audio_result(audio_file, "Claude Response")
# Save to history
st.session_state.transcript_history.append({
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
'query': edited_input,
'response': result,
'model': run_option
})
except Exception as e:
st.error(f"Error processing request: {str(e)}")
# Manual run button
elif st.button("▶ Run"):
try:
with st.spinner("Processing..."):
if run_option == "Arxiv":
result = perform_ai_lookup(
edited_input,
vocal_summary=True,
extended_refs=False,
titles_summary=True,
full_audio=True,
voice=selected_voice
)
elif run_option == "GPT-4o":
result = process_with_gpt(edited_input)
audio_file = asyncio.run(generate_audio(result, voice=selected_voice))
if audio_file:
render_audio_result(audio_file, "GPT-4 Response")
elif run_option == "Claude-3.5":
result = process_with_claude(edited_input)
audio_file = asyncio.run(generate_audio(result, voice=selected_voice))
if audio_file:
render_audio_result(audio_file, "Claude Response")
# Save to history
st.session_state.transcript_history.append({
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
'query': edited_input,
'response': result,
'model': run_option
})
except Exception as e:
st.error(f"Error processing request: {str(e)}")
def main():
st.title("🔬 ARIA Research Assistant")
# Initialize settings
with st.sidebar:
st.title("⚙️ Settings")
# Audio Settings
st.subheader("Audio Settings")
st.session_state.autoplay_audio = st.checkbox(
"Autoplay Audio",
value=True,
help="Automatically play audio when generated"
)
rate = st.slider("Speech Rate", -50, 50, 0, 5)
pitch = st.slider("Pitch", -50, 50, 0, 5)
# Advanced Settings
st.subheader("Advanced")
save_history = st.checkbox(
"Save History",
value=True,
help="Save transcripts and responses"
)
cleanup_old = st.checkbox(
"Auto Cleanup",
value=False,
help="Remove old files automatically"
)
# Main content tabs
tabs = st.tabs(["🎤 Voice Search", "📚 History", "🎵 Media", "⚙️ Advanced"])
with tabs[0]:
render_search_interface()
with tabs[1]:
st.header("Search History")
if st.session_state.transcript_history:
for entry in reversed(st.session_state.transcript_history):
with st.expander(
f"🔍 {entry['timestamp']} - {entry['query'][:50]}...",
expanded=False
):
st.markdown(f"**Model:** {entry['model']}")
st.markdown(entry['response'])
with tabs[2]:
st.header("Media Files")
media_tabs = st.tabs(["🎵 Audio", "🎥 Video", "📷 Images"])
with media_tabs[0]:
audio_files = glob.glob("*.mp3")
if audio_files:
for audio_file in sorted(audio_files, key=os.path.getmtime, reverse=True):
st.markdown(get_audio_autoplay_html(audio_file), unsafe_allow_html=True)
else:
st.write("No audio files found")
with media_tabs[1]:
video_files = glob.glob("*.mp4")
if video_files:
cols = st.columns(2)
for idx, video_file in enumerate(video_files):
with cols[idx % 2]:
st.video(video_file)
else:
st.write("No video files found")
with media_tabs[2]:
image_files = glob.glob("*.png") + glob.glob("*.jpg")
if image_files:
cols = st.columns(3)
for idx, image_file in enumerate(image_files):
with cols[idx % 3]:
st.image(Image.open(image_file), use_column_width=True)
else:
st.write("No images found")
with tabs[3]:
st.header("Advanced Settings")
col1, col2 = st.columns(2)
with col1:
st.subheader("Model Settings")
st.selectbox(
"Default Model",
["Arxiv", "GPT-4o", "Claude-3.5"],
key="default_model"
)
st.number_input(
"Max Response Length",
min_value=100,
max_value=2000,
value=1000,
key="max_tokens"
)
with col2:
st.subheader("Voice Settings")
st.slider(
"Pause Detection (ms)",
min_value=500,
max_value=3000,
value=1500,
step=100,
key="pause_threshold"
)
st.checkbox(
"High Quality Voice",
value=True,
key="high_quality_audio"
)
# Cleanup utility
def cleanup_old_files(days=7):
"""Remove files older than specified days"""
current_time = time.time()
for pattern in ["*.md", "*.mp3"]:
for f in glob.glob(pattern):
creation_time = os.path.getctime(f)
if (current_time - creation_time) // (24 * 3600) >= days:
try:
os.remove(f)
except:
pass
if __name__ == "__main__":
if st.session_state.get('cleanup_enabled', False):
cleanup_old_files()
main()