Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
#!/usr/bin/env python3 | |
import os | |
import re | |
import glob | |
import json | |
import base64 | |
import zipfile | |
import random | |
import requests | |
import openai | |
from PIL import Image | |
from urllib.parse import quote | |
import streamlit as st | |
import streamlit.components.v1 as components | |
# ๐ฐ If you do model inference via huggingface_hub | |
# from huggingface_hub import InferenceClient | |
# ===================================================================================== | |
# 1) GLOBAL CONFIG & PLACEHOLDERS | |
# ===================================================================================== | |
BASE_URL = "https://huggingface.co/spaces/awacke1/MermaidMarkdownDiagramEditor" | |
PromptPrefix = "AI-Search: " | |
PromptPrefix2 = "AI-Refine: " | |
PromptPrefix3 = "AI-JS: " | |
roleplaying_glossary = { | |
"Core Rulebooks": { | |
"Dungeons and Dragons": ["Player's Handbook", "Dungeon Master's Guide", "Monster Manual"], | |
"GURPS": ["Basic Set Characters", "Basic Set Campaigns"] | |
}, | |
"Campaigns & Adventures": { | |
"Pathfinder": ["Rise of the Runelords", "Curse of the Crimson Throne"] | |
} | |
} | |
transhuman_glossary = { | |
"Neural Interfaces": ["Cortex Jack", "Mind-Machine Fusion"], | |
"Cybernetics": ["Robotic Limbs", "Augmented Eyes"], | |
} | |
def process_text(text): | |
"""๐ต๏ธ process_text: detective styleโprints lines to Streamlit for debugging.""" | |
st.write(f"process_text called with: {text}") | |
def search_arxiv(text): | |
"""๐ญ search_arxiv: pretend to search ArXiv, just prints debug for now.""" | |
st.write(f"search_arxiv called with: {text}") | |
def SpeechSynthesis(text): | |
"""๐ฃ SpeechSynthesis: read lines out loud? Here, we log them for demonstration.""" | |
st.write(f"SpeechSynthesis called with: {text}") | |
def process_image(image_file, prompt): | |
"""๐ท process_image: imagine an AI pipeline for images, here we just log.""" | |
return f"[process_image placeholder] {image_file} => {prompt}" | |
def process_video(video_file, seconds_per_frame): | |
"""๐ process_video: placeholder for video tasks, logs to Streamlit.""" | |
st.write(f"[process_video placeholder] {video_file}, {seconds_per_frame} sec/frame") | |
API_URL = "https://huggingface-inference-endpoint-placeholder" | |
API_KEY = "hf_XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" | |
def InferenceLLM(prompt): | |
"""๐ฎ InferenceLLM: a stub returning a mock response for 'prompt'.""" | |
return f"[InferenceLLM placeholder response to prompt: {prompt}]" | |
# ===================================================================================== | |
# 2) GLOSSARY & FILE UTILITY | |
# ===================================================================================== | |
def display_glossary_entity(k): | |
""" | |
Creates multiple link emojis for a single entity. | |
Each link might point to /?q=..., /?q=<prefix>..., or external sites. | |
""" | |
search_urls = { | |
"๐๐ArXiv": lambda x: f"/?q={quote(x)}", | |
"๐Analyst": lambda x: f"/?q={quote(x)}-{quote(PromptPrefix)}", | |
"๐PyCoder": lambda x: f"/?q={quote(x)}-{quote(PromptPrefix2)}", | |
"๐ฌJSCoder": lambda x: f"/?q={quote(x)}-{quote(PromptPrefix3)}", | |
"๐": lambda x: f"https://en.wikipedia.org/wiki/{quote(x)}", | |
"๐": lambda x: f"https://www.google.com/search?q={quote(x)}", | |
"๐": lambda x: f"https://www.bing.com/search?q={quote(x)}", | |
"๐ฅ": lambda x: f"https://www.youtube.com/results?search_query={quote(x)}", | |
"๐ฆ": lambda x: f"https://twitter.com/search?q={quote(x)}", | |
} | |
links_md = ' '.join([f"[{emoji}]({url(k)})" for emoji, url in search_urls.items()]) | |
st.markdown(f"**{k}** <small>{links_md}</small>", unsafe_allow_html=True) | |
def display_content_or_image(query): | |
""" | |
If 'query' is in transhuman_glossary or there's an image matching 'images/<query>.png', | |
we show it. Otherwise warn. | |
""" | |
for category, term_list in transhuman_glossary.items(): | |
for term in term_list: | |
if query.lower() in term.lower(): | |
st.subheader(f"Found in {category}:") | |
st.write(term) | |
return True | |
image_path = f"images/{query}.png" | |
if os.path.exists(image_path): | |
st.image(image_path, caption=f"Image for {query}") | |
return True | |
st.warning("No matching content or image found.") | |
return False | |
def clear_query_params(): | |
"""For fully clearing, you'd do a redirect or st.experimental_set_query_params().""" | |
st.warning("Define a redirect or link without query params if you want to truly clear them.") | |
# ===================================================================================== | |
# 3) FILE-HANDLING (MD files, etc.) | |
# ===================================================================================== | |
def load_file(file_path): | |
"""Load file contents as UTF-8 text, or return empty on error.""" | |
try: | |
with open(file_path, "r", encoding='utf-8') as f: | |
return f.read() | |
except: | |
return "" | |
def create_zip_of_files(files): | |
"""Combine multiple local files into a single .zip for user to download.""" | |
zip_name = "Arxiv-Paper-Search-QA-RAG-Streamlit-Gradio-AP.zip" | |
with zipfile.ZipFile(zip_name, 'w') as zipf: | |
for file in files: | |
zipf.write(file) | |
return zip_name | |
def get_zip_download_link(zip_file): | |
"""Return an <a> link to download the given zip_file (base64-encoded).""" | |
with open(zip_file, 'rb') as f: | |
data = f.read() | |
b64 = base64.b64encode(data).decode() | |
return f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>' | |
def get_table_download_link(file_path): | |
""" | |
Creates a download link for a single file from your snippet. | |
Encodes it as base64 data. | |
""" | |
try: | |
with open(file_path, 'r', encoding='utf-8') as file: | |
data = file.read() | |
b64 = base64.b64encode(data.encode()).decode() | |
file_name = os.path.basename(file_path) | |
ext = os.path.splitext(file_name)[1] | |
mime_map = { | |
'.txt': 'text/plain', | |
'.py': 'text/plain', | |
'.xlsx': 'text/plain', | |
'.csv': 'text/plain', | |
'.htm': 'text/html', | |
'.md': 'text/markdown', | |
'.wav': 'audio/wav' | |
} | |
mime_type = mime_map.get(ext, 'application/octet-stream') | |
return f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>' | |
except: | |
return '' | |
def get_file_size(file_path): | |
"""Get file size in bytes.""" | |
return os.path.getsize(file_path) | |
def FileSidebar(): | |
""" | |
Renders .md files in the sidebar with open/view/run/delete logic. | |
""" | |
all_files = glob.glob("*.md") | |
# If you want to filter out short-named or special files: | |
all_files = [f for f in all_files if len(os.path.splitext(f)[0]) >= 5] | |
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) | |
Files1, Files2 = st.sidebar.columns(2) | |
with Files1: | |
if st.button("๐ Delete All"): | |
for file in all_files: | |
os.remove(file) | |
st.rerun() | |
with Files2: | |
if st.button("โฌ๏ธ Download"): | |
zip_file = create_zip_of_files(all_files) | |
st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True) | |
file_contents = '' | |
file_name = '' | |
next_action = '' | |
for file in all_files: | |
col1, col2, col3, col4, col5 = st.sidebar.columns([1, 6, 1, 1, 1]) | |
with col1: | |
if st.button("๐", key="md_" + file): | |
file_contents = load_file(file) | |
file_name = file | |
next_action = 'md' | |
st.session_state['next_action'] = next_action | |
with col2: | |
st.markdown(get_table_download_link(file), unsafe_allow_html=True) | |
with col3: | |
if st.button("๐", key="open_" + file): | |
file_contents = load_file(file) | |
file_name = file | |
next_action = 'open' | |
st.session_state['lastfilename'] = file | |
st.session_state['filename'] = file | |
st.session_state['filetext'] = file_contents | |
st.session_state['next_action'] = next_action | |
with col4: | |
if st.button("โถ๏ธ", key="read_" + file): | |
file_contents = load_file(file) | |
file_name = file | |
next_action = 'search' | |
st.session_state['next_action'] = next_action | |
with col5: | |
if st.button("๐", key="delete_" + file): | |
os.remove(file) | |
st.rerun() | |
if file_contents: | |
if next_action == 'open': | |
open1, open2 = st.columns([0.8, 0.2]) | |
with open1: | |
file_name_input = st.text_input('File Name:', file_name, key='file_name_input') | |
file_content_area = st.text_area('File Contents:', file_contents, height=300, key='file_content_area') | |
if st.button('๐พ Save File'): | |
with open(file_name_input, 'w', encoding='utf-8') as f: | |
f.write(file_content_area) | |
st.markdown(f'Saved {file_name_input} successfully.') | |
elif next_action == 'search': | |
file_content_area = st.text_area("File Contents:", file_contents, height=500) | |
user_prompt = PromptPrefix2 + file_contents | |
st.markdown(user_prompt) | |
if st.button('๐Re-Code'): | |
search_arxiv(file_contents) | |
elif next_action == 'md': | |
st.markdown(file_contents) | |
SpeechSynthesis(file_contents) | |
if st.button("๐Run"): | |
st.write("Running GPT logic placeholder...") | |
# ===================================================================================== | |
# 4) SCORING / GLOSSARIES | |
# ===================================================================================== | |
score_dir = "scores" | |
os.makedirs(score_dir, exist_ok=True) | |
def generate_key(label, header, idx): | |
return f"{header}_{label}_{idx}_key" | |
def update_score(key, increment=1): | |
"""Increment the 'score' for a glossary item in JSON storage.""" | |
score_file = os.path.join(score_dir, f"{key}.json") | |
if os.path.exists(score_file): | |
with open(score_file, "r") as file: | |
score_data = json.load(file) | |
else: | |
score_data = {"clicks": 0, "score": 0} | |
score_data["clicks"] += increment | |
score_data["score"] += increment | |
with open(score_file, "w") as file: | |
json.dump(score_data, file) | |
return score_data["score"] | |
def load_score(key): | |
"""Load the stored score from .json if it exists, else 0.""" | |
file_path = os.path.join(score_dir, f"{key}.json") | |
if os.path.exists(file_path): | |
with open(file_path, "r") as file: | |
score_data = json.load(file) | |
return score_data["score"] | |
return 0 | |
def display_buttons_with_scores(num_columns_text): | |
""" | |
Show glossary items as clickable buttons, each increments a 'score'. | |
""" | |
game_emojis = { | |
"Dungeons and Dragons": "๐", | |
"Call of Cthulhu": "๐", | |
"GURPS": "๐ฒ", | |
"Pathfinder": "๐บ๏ธ", | |
"Kindred of the East": "๐ ", | |
"Changeling": "๐", | |
} | |
topic_emojis = { | |
"Core Rulebooks": "๐", | |
"Maps & Settings": "๐บ๏ธ", | |
"Game Mechanics & Tools": "โ๏ธ", | |
"Monsters & Adversaries": "๐น", | |
"Campaigns & Adventures": "๐", | |
"Creatives & Assets": "๐จ", | |
"Game Master Resources": "๐ ๏ธ", | |
"Lore & Background": "๐", | |
"Character Development": "๐ง", | |
"Homebrew Content": "๐ง", | |
"General Topics": "๐", | |
} | |
for category, games in roleplaying_glossary.items(): | |
category_emoji = topic_emojis.get(category, "๐") | |
st.markdown(f"## {category_emoji} {category}") | |
for game, terms in games.items(): | |
game_emoji = game_emojis.get(game, "๐ฎ") | |
for term in terms: | |
key = f"{category}_{game}_{term}".replace(' ', '_').lower() | |
score_val = load_score(key) | |
if st.button(f"{game_emoji} {category} {game} {term} {score_val}", key=key): | |
newscore = update_score(key.replace('?', '')) | |
st.markdown(f"Scored **{category} - {game} - {term}** -> {newscore}") | |
# ===================================================================================== | |
# 5) IMAGES & VIDEOS | |
# ===================================================================================== | |
def display_images_and_wikipedia_summaries(num_columns=4): | |
"""Display .png images in a grid, referencing the name as a 'keyword'.""" | |
image_files = [f for f in os.listdir('.') if f.endswith('.png')] | |
if not image_files: | |
st.write("No PNG images found in the current directory.") | |
return | |
image_files_sorted = sorted(image_files, key=lambda x: len(x.split('.')[0])) | |
cols = st.columns(num_columns) | |
col_index = 0 | |
for image_file in image_files_sorted: | |
with cols[col_index % num_columns]: | |
try: | |
image = Image.open(image_file) | |
st.image(image, use_column_width=True) | |
k = image_file.split('.')[0] | |
display_glossary_entity(k) | |
image_text_input = st.text_input(f"Prompt for {image_file}", key=f"image_prompt_{image_file}") | |
if image_text_input: | |
response = process_image(image_file, image_text_input) | |
st.markdown(response) | |
except: | |
st.write(f"Could not open {image_file}") | |
col_index += 1 | |
def display_videos_and_links(num_columns=4): | |
"""Displays all .mp4/.webm in a grid, plus text input for prompts.""" | |
video_files = [f for f in os.listdir('.') if f.endswith(('.mp4', '.webm'))] | |
if not video_files: | |
st.write("No MP4 or WEBM videos found in the current directory.") | |
return | |
video_files_sorted = sorted(video_files, key=lambda x: len(x.split('.')[0])) | |
cols = st.columns(num_columns) | |
col_index = 0 | |
for video_file in video_files_sorted: | |
with cols[col_index % num_columns]: | |
k = video_file.split('.')[0] | |
st.video(video_file, format='video/mp4', start_time=0) | |
display_glossary_entity(k) | |
video_text_input = st.text_input(f"Video Prompt for {video_file}", key=f"video_prompt_{video_file}") | |
if video_text_input: | |
try: | |
seconds_per_frame = 10 | |
process_video(video_file, seconds_per_frame) | |
except ValueError: | |
st.error("Invalid input for seconds per frame!") | |
col_index += 1 | |
# ===================================================================================== | |
# 6) MERMAID & PARTIAL SUBGRAPH LOGIC | |
# ===================================================================================== | |
def generate_mermaid_html(mermaid_code: str) -> str: | |
"""Embed mermaid_code in a minimal HTML snippet, centered.""" | |
return f""" | |
<html> | |
<head> | |
<script src="https://cdn.jsdelivr.net/npm/mermaid/dist/mermaid.min.js"></script> | |
<style> | |
.centered-mermaid {{ | |
display: flex; | |
justify-content: center; | |
margin: 20px auto; | |
}} | |
.mermaid {{ | |
max-width: 800px; | |
}} | |
</style> | |
</head> | |
<body> | |
<div class="mermaid centered-mermaid"> | |
{mermaid_code} | |
</div> | |
<script> | |
mermaid.initialize({{ startOnLoad: true }}); | |
</script> | |
</body> | |
</html> | |
""" | |
def append_model_param(url: str, model_selected: bool) -> str: | |
"""If user selects 'model=1', we append &model=1 or ?model=1 if not present.""" | |
if not model_selected: | |
return url | |
delimiter = "&" if "?" in url else "?" | |
return f"{url}{delimiter}model=1" | |
def inject_base_url(url: str) -> str: | |
"""If link doesn't start with 'http', prepend BASE_URL so it's absolute.""" | |
if url.startswith("http"): | |
return url | |
return f"{BASE_URL}{url}" | |
# Our default diagram, containing the "click" lines with /?q=... | |
DEFAULT_MERMAID = r""" | |
flowchart LR | |
U((User ๐)) -- "Talk ๐ฃ๏ธ" --> LLM[LLM Agent ๐ค\nExtract Info] | |
click U "/?q=User%20๐" "Open 'User ๐'" "_blank" | |
click LLM "/?q=LLM%20Agent%20Extract%20Info" "Open LLM" "_blank" | |
LLM -- "Query ๐" --> HS[Hybrid Search ๐\nVector+NER+Lexical] | |
click HS "/?q=Hybrid%20Search%20Vector+NER+Lexical" "Open HS" "_blank" | |
HS -- "Reason ๐ค" --> RE[Reasoning Engine ๐ ๏ธ\nNeuralNetwork+Medical] | |
click RE "/?q=Reasoning%20Engine%20NeuralNetwork+Medical" "Open RE" "_blank" | |
RE -- "Link ๐ก" --> KG((Knowledge Graph ๐\nOntology+GAR+RAG)) | |
click KG "/?q=Knowledge%20Graph%20Ontology+GAR+RAG" "Open KG" "_blank" | |
""" | |
# BFS subgraph: we parse lines like A -- "Label" --> B | |
def parse_mermaid_edges(mermaid_text: str): | |
""" | |
๐ฟ parse_mermaid_edges: | |
- Find lines like: A -- "Label" --> B | |
- Return adjacency dict: edges[A] = [(label, B), ...] | |
""" | |
adjacency = {} | |
# e.g. U((User ๐)) -- "Talk ๐ฃ๏ธ" --> LLM[LLM Agent ๐ค\nExtract Info] | |
edge_pattern = re.compile(r'(\S+)\s*--\s*"([^"]*)"\s*-->\s*(\S+)') | |
for line in mermaid_text.split('\n'): | |
match = edge_pattern.search(line.strip()) | |
if match: | |
nodeA, label, nodeB = match.groups() | |
if nodeA not in adjacency: | |
adjacency[nodeA] = [] | |
adjacency[nodeA].append((label, nodeB)) | |
return adjacency | |
def bfs_subgraph(adjacency, start_node, depth=1): | |
""" | |
๐ bfs_subgraph: | |
- Gather edges up to 'depth' levels from start_node | |
- If depth=1, only direct edges from node | |
""" | |
from collections import deque | |
visited = set() | |
queue = deque([(start_node, 0)]) | |
edges = [] | |
while queue: | |
current, lvl = queue.popleft() | |
if current in visited: | |
continue | |
visited.add(current) | |
if current in adjacency and lvl < depth: | |
for (label, child) in adjacency[current]: | |
edges.append((current, label, child)) | |
queue.append((child, lvl + 1)) | |
return edges | |
def create_subgraph_mermaid(sub_edges, start_node): | |
""" | |
๐ create_subgraph_mermaid: | |
- build a smaller flowchart snippet with edges from BFS | |
""" | |
sub_mermaid = "flowchart LR\n" | |
sub_mermaid += f" %% Subgraph for {start_node}\n" | |
if not sub_edges: | |
sub_mermaid += f" {start_node}\n" | |
sub_mermaid += " %% End of partial subgraph\n" | |
return sub_mermaid | |
for (A, label, B) in sub_edges: | |
sub_mermaid += f' {A} -- "{label}" --> {B}\n' | |
sub_mermaid += " %% End of partial subgraph\n" | |
return sub_mermaid | |
# ===================================================================================== | |
# 7) MAIN APP | |
# ===================================================================================== | |
def main(): | |
st.set_page_config(page_title="Mermaid + BFS Subgraph + Full Logic", layout="wide") | |
# 1) Query param parsing | |
query_params = st.query_params | |
query_list = (query_params.get('q') or query_params.get('query') or ['']) | |
q_or_query = query_list[0].strip() if len(query_list) > 0 else "" | |
# If 'action' param is present | |
if 'action' in query_params: | |
action_list = query_params['action'] | |
if action_list: | |
action = action_list[0] | |
if action == 'show_message': | |
st.success("Showing a message because 'action=show_message' was found in the URL.") | |
elif action == 'clear': | |
clear_query_params() | |
# If there's a 'query=' param, display content or image | |
if 'query' in query_params: | |
query_val = query_params['query'][0] | |
display_content_or_image(query_val) | |
# 2) Let user pick ?model=1 | |
st.sidebar.write("## Diagram Link Settings") | |
model_selected = st.sidebar.checkbox("Append ?model=1 to each link?") | |
# 3) We'll parse adjacency from DEFAULT_MERMAID, then do the injection for base URL | |
# and possible model param. We'll store the final mermaid code in session. | |
lines = DEFAULT_MERMAID.strip().split("\n") | |
new_lines = [] | |
for line in lines: | |
if "click " in line and '"/?' in line: | |
# Try to parse out the URL via a simpler pattern | |
# e.g. click U "/?q=User%20๐" "Open 'User ๐'" "_blank" | |
# We'll do a quick re.split capturing 4 groups | |
# Example: [prefix, '/?q=User%20๐', "Open 'User ๐'", '_blank', remainder?] | |
pattern = r'(click\s+\S+\s+)"([^"]+)"\s+"([^"]+)"\s+"([^"]+)"' | |
match = re.match(pattern, line.strip()) | |
if match: | |
prefix_part = match.group(1) # e.g. "click U " | |
old_url = match.group(2) # e.g. /?q=User%20๐ | |
tooltip = match.group(3) # e.g. Open 'User ๐' | |
target = match.group(4) # e.g. _blank | |
# 1) base | |
new_url = inject_base_url(old_url) | |
# 2) model param | |
new_url = append_model_param(new_url, model_selected) | |
new_line = f'{prefix_part}"{new_url}" "{tooltip}" "{target}"' | |
new_lines.append(new_line) | |
else: | |
new_lines.append(line) | |
else: | |
new_lines.append(line) | |
final_mermaid = "\n".join(new_lines) | |
adjacency = parse_mermaid_edges(final_mermaid) | |
# 4) If user clicked a shape => we show a partial subgraph as "SearchResult" | |
partial_subgraph_html = "" | |
if q_or_query: | |
st.info(f"process_text called with: {PromptPrefix}{q_or_query}") | |
# Attempt to find a node whose ID or label includes q_or_query: | |
# We'll do a naive approach: if q_or_query is substring ignoring spaces | |
possible_keys = [] | |
for nodeKey in adjacency.keys(): | |
# e.g. nodeKey might be 'U((User ๐))' | |
simplified_key = nodeKey.replace("\\n", " ").replace("[", "").replace("]", "").lower() | |
simplified_query = q_or_query.lower().replace("%20", " ") | |
if simplified_query in simplified_key: | |
possible_keys.append(nodeKey) | |
chosen_node = None | |
if possible_keys: | |
chosen_node = possible_keys[0] | |
else: | |
st.warning("No adjacency node matched the query param's text. Subgraph is empty.") | |
if chosen_node: | |
sub_edges = bfs_subgraph(adjacency, chosen_node, depth=1) | |
sub_mermaid = create_subgraph_mermaid(sub_edges, chosen_node) | |
partial_subgraph_html = generate_mermaid_html(sub_mermaid) | |
# 5) Show partial subgraph top-center if we have any | |
if partial_subgraph_html: | |
st.subheader("SearchResult Subgraph") | |
components.html(partial_subgraph_html, height=300, scrolling=False) | |
# 6) Render the top-centered *full* diagram | |
st.title("Full Mermaid Diagram (with Base URL + BFS partial subgraphs)") | |
diagram_html = generate_mermaid_html(final_mermaid) | |
components.html(diagram_html, height=400, scrolling=True) | |
# 7) Editor columns: Markdown & Mermaid | |
left_col, right_col = st.columns(2) | |
with left_col: | |
st.subheader("Markdown Side ๐") | |
if "markdown_text" not in st.session_state: | |
st.session_state["markdown_text"] = "## Hello!\nYou can type some *Markdown* here.\n" | |
markdown_text = st.text_area( | |
"Edit Markdown:", | |
value=st.session_state["markdown_text"], | |
height=300 | |
) | |
st.session_state["markdown_text"] = markdown_text | |
# Buttons | |
colA, colB = st.columns(2) | |
with colA: | |
if st.button("๐ Refresh Markdown"): | |
st.write("**Markdown** content refreshed! ๐ฟ") | |
with colB: | |
if st.button("โ Clear Markdown"): | |
st.session_state["markdown_text"] = "" | |
st.rerun() | |
st.markdown("---") | |
st.markdown("**Preview:**") | |
st.markdown(markdown_text) | |
with right_col: | |
st.subheader("Mermaid Side ๐งโโ๏ธ") | |
if "current_mermaid" not in st.session_state: | |
st.session_state["current_mermaid"] = final_mermaid | |
mermaid_input = st.text_area( | |
"Edit Mermaid Code:", | |
value=st.session_state["current_mermaid"], | |
height=300 | |
) | |
colC, colD = st.columns(2) | |
with colC: | |
if st.button("๐จ Refresh Diagram"): | |
st.session_state["current_mermaid"] = mermaid_input | |
st.write("**Mermaid** diagram refreshed! ๐") | |
st.rerun() | |
with colD: | |
if st.button("โ Clear Mermaid"): | |
st.session_state["current_mermaid"] = "" | |
st.rerun() | |
st.markdown("---") | |
st.markdown("**Mermaid Source:**") | |
st.code(mermaid_input, language="python", line_numbers=True) | |
# 8) Show the galleries | |
st.markdown("---") | |
st.header("Media Galleries") | |
num_columns_images = st.slider("Choose Number of Image Columns", 1, 15, 5, key="num_columns_images") | |
display_images_and_wikipedia_summaries(num_columns_images) | |
num_columns_video = st.slider("Choose Number of Video Columns", 1, 15, 5, key="num_columns_video") | |
display_videos_and_links(num_columns_video) | |
# 9) Possibly show extended text interface | |
showExtendedTextInterface = False | |
if showExtendedTextInterface: | |
# e.g. display_glossary_grid(roleplaying_glossary) | |
# num_columns_text = st.slider("Choose Number of Text Columns", 1, 15, 4) | |
# display_buttons_with_scores(num_columns_text) | |
pass | |
# 10) Render the file sidebar | |
FileSidebar() | |
# 11) Random title at bottom | |
titles = [ | |
"๐ง ๐ญ Semantic Symphonies & Episodic Encores", | |
"๐๐ผ AI Rhythms of Memory Lane", | |
"๐ญ๐ Cognitive Crescendos & Neural Harmonies", | |
"๐ง ๐บ Mnemonic Melodies & Synaptic Grooves", | |
"๐ผ๐ธ Straight Outta Cognition", | |
"๐ฅ๐ป Jazzy Jambalaya of AI Memories", | |
"๐ฐ Semantic Soul & Episodic Essence", | |
"๐ฅ๐ป The Music Of AI's Mind" | |
] | |
st.markdown(f"**{random.choice(titles)}**") | |
if __name__ == "__main__": | |
main() | |