Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 26,817 Bytes
b1d0519 99206bf 08f9116 99206bf 08f9116 ad82dc6 08f9116 99206bf 08f9116 99206bf 08f9116 99206bf 08f9116 99206bf 08f9116 99206bf 08f9116 99206bf 08f9116 99206bf 08f9116 99206bf 08f9116 ad82dc6 08f9116 9be2fe6 08f9116 99206bf 08f9116 99206bf 08f9116 99206bf 08f9116 99206bf 08f9116 99206bf 08f9116 99206bf 08f9116 99206bf 08f9116 9be2fe6 08f9116 9be2fe6 08f9116 99206bf 08f9116 99206bf 08f9116 99206bf 08f9116 99206bf 08f9116 99206bf 08f9116 99206bf 08f9116 99206bf 08f9116 99206bf 08f9116 99206bf 08f9116 99206bf 08f9116 99206bf 08f9116 99206bf 08f9116 99206bf 08f9116 99206bf 08f9116 9be2fe6 08f9116 9be2fe6 08f9116 ad82dc6 99206bf 08f9116 99206bf 08f9116 99206bf 08f9116 99206bf 08f9116 ad82dc6 99206bf 08f9116 99206bf 08f9116 99206bf 08f9116 99206bf 08f9116 ad82dc6 99206bf b1d0519 b5ac531 99206bf b1d0519 b5ac531 99206bf b1d0519 b5ac531 99206bf b1d0519 b5ac531 99206bf b1d0519 ad82dc6 99206bf b1d0519 99206bf 08f9116 99206bf b1d0519 08f9116 99206bf 08f9116 99206bf 08f9116 99206bf 08f9116 99206bf 08f9116 99206bf ad82dc6 08f9116 99206bf 08f9116 99206bf 08f9116 99206bf 08f9116 99206bf 08f9116 99206bf 08f9116 99206bf 08f9116 99206bf 08f9116 b1d0519 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 |
#!/usr/bin/env python3
import os
import re
import glob
import json
import base64
import zipfile
import random
import requests
import openai
from PIL import Image
from urllib.parse import quote
import streamlit as st
import streamlit.components.v1 as components
# ๐ฐ If you do model inference via huggingface_hub
# from huggingface_hub import InferenceClient
# =====================================================================================
# 1) GLOBAL CONFIG & PLACEHOLDERS
# =====================================================================================
BASE_URL = "https://huggingface.co/spaces/awacke1/MermaidMarkdownDiagramEditor"
PromptPrefix = "AI-Search: "
PromptPrefix2 = "AI-Refine: "
PromptPrefix3 = "AI-JS: "
roleplaying_glossary = {
"Core Rulebooks": {
"Dungeons and Dragons": ["Player's Handbook", "Dungeon Master's Guide", "Monster Manual"],
"GURPS": ["Basic Set Characters", "Basic Set Campaigns"]
},
"Campaigns & Adventures": {
"Pathfinder": ["Rise of the Runelords", "Curse of the Crimson Throne"]
}
}
transhuman_glossary = {
"Neural Interfaces": ["Cortex Jack", "Mind-Machine Fusion"],
"Cybernetics": ["Robotic Limbs", "Augmented Eyes"],
}
def process_text(text):
"""๐ต๏ธ process_text: detective styleโprints lines to Streamlit for debugging."""
st.write(f"process_text called with: {text}")
def search_arxiv(text):
"""๐ญ search_arxiv: pretend to search ArXiv, just prints debug for now."""
st.write(f"search_arxiv called with: {text}")
def SpeechSynthesis(text):
"""๐ฃ SpeechSynthesis: read lines out loud? Here, we log them for demonstration."""
st.write(f"SpeechSynthesis called with: {text}")
def process_image(image_file, prompt):
"""๐ท process_image: imagine an AI pipeline for images, here we just log."""
return f"[process_image placeholder] {image_file} => {prompt}"
def process_video(video_file, seconds_per_frame):
"""๐ process_video: placeholder for video tasks, logs to Streamlit."""
st.write(f"[process_video placeholder] {video_file}, {seconds_per_frame} sec/frame")
API_URL = "https://huggingface-inference-endpoint-placeholder"
API_KEY = "hf_XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
@st.cache_resource
def InferenceLLM(prompt):
"""๐ฎ InferenceLLM: a stub returning a mock response for 'prompt'."""
return f"[InferenceLLM placeholder response to prompt: {prompt}]"
# =====================================================================================
# 2) GLOSSARY & FILE UTILITY
# =====================================================================================
@st.cache_resource
def display_glossary_entity(k):
"""
Creates multiple link emojis for a single entity.
Each link might point to /?q=..., /?q=<prefix>..., or external sites.
"""
search_urls = {
"๐๐ArXiv": lambda x: f"/?q={quote(x)}",
"๐Analyst": lambda x: f"/?q={quote(x)}-{quote(PromptPrefix)}",
"๐PyCoder": lambda x: f"/?q={quote(x)}-{quote(PromptPrefix2)}",
"๐ฌJSCoder": lambda x: f"/?q={quote(x)}-{quote(PromptPrefix3)}",
"๐": lambda x: f"https://en.wikipedia.org/wiki/{quote(x)}",
"๐": lambda x: f"https://www.google.com/search?q={quote(x)}",
"๐": lambda x: f"https://www.bing.com/search?q={quote(x)}",
"๐ฅ": lambda x: f"https://www.youtube.com/results?search_query={quote(x)}",
"๐ฆ": lambda x: f"https://twitter.com/search?q={quote(x)}",
}
links_md = ' '.join([f"[{emoji}]({url(k)})" for emoji, url in search_urls.items()])
st.markdown(f"**{k}** <small>{links_md}</small>", unsafe_allow_html=True)
def display_content_or_image(query):
"""
If 'query' is in transhuman_glossary or there's an image matching 'images/<query>.png',
we show it. Otherwise warn.
"""
for category, term_list in transhuman_glossary.items():
for term in term_list:
if query.lower() in term.lower():
st.subheader(f"Found in {category}:")
st.write(term)
return True
image_path = f"images/{query}.png"
if os.path.exists(image_path):
st.image(image_path, caption=f"Image for {query}")
return True
st.warning("No matching content or image found.")
return False
def clear_query_params():
"""For fully clearing, you'd do a redirect or st.experimental_set_query_params()."""
st.warning("Define a redirect or link without query params if you want to truly clear them.")
# =====================================================================================
# 3) FILE-HANDLING (MD files, etc.)
# =====================================================================================
def load_file(file_path):
"""Load file contents as UTF-8 text, or return empty on error."""
try:
with open(file_path, "r", encoding='utf-8') as f:
return f.read()
except:
return ""
@st.cache_resource
def create_zip_of_files(files):
"""Combine multiple local files into a single .zip for user to download."""
zip_name = "Arxiv-Paper-Search-QA-RAG-Streamlit-Gradio-AP.zip"
with zipfile.ZipFile(zip_name, 'w') as zipf:
for file in files:
zipf.write(file)
return zip_name
@st.cache_resource
def get_zip_download_link(zip_file):
"""Return an <a> link to download the given zip_file (base64-encoded)."""
with open(zip_file, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
return f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
def get_table_download_link(file_path):
"""
Creates a download link for a single file from your snippet.
Encodes it as base64 data.
"""
try:
with open(file_path, 'r', encoding='utf-8') as file:
data = file.read()
b64 = base64.b64encode(data.encode()).decode()
file_name = os.path.basename(file_path)
ext = os.path.splitext(file_name)[1]
mime_map = {
'.txt': 'text/plain',
'.py': 'text/plain',
'.xlsx': 'text/plain',
'.csv': 'text/plain',
'.htm': 'text/html',
'.md': 'text/markdown',
'.wav': 'audio/wav'
}
mime_type = mime_map.get(ext, 'application/octet-stream')
return f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
except:
return ''
def get_file_size(file_path):
"""Get file size in bytes."""
return os.path.getsize(file_path)
def FileSidebar():
"""
Renders .md files in the sidebar with open/view/run/delete logic.
"""
all_files = glob.glob("*.md")
# If you want to filter out short-named or special files:
all_files = [f for f in all_files if len(os.path.splitext(f)[0]) >= 5]
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True)
Files1, Files2 = st.sidebar.columns(2)
with Files1:
if st.button("๐ Delete All"):
for file in all_files:
os.remove(file)
st.rerun()
with Files2:
if st.button("โฌ๏ธ Download"):
zip_file = create_zip_of_files(all_files)
st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True)
file_contents = ''
file_name = ''
next_action = ''
for file in all_files:
col1, col2, col3, col4, col5 = st.sidebar.columns([1, 6, 1, 1, 1])
with col1:
if st.button("๐", key="md_" + file):
file_contents = load_file(file)
file_name = file
next_action = 'md'
st.session_state['next_action'] = next_action
with col2:
st.markdown(get_table_download_link(file), unsafe_allow_html=True)
with col3:
if st.button("๐", key="open_" + file):
file_contents = load_file(file)
file_name = file
next_action = 'open'
st.session_state['lastfilename'] = file
st.session_state['filename'] = file
st.session_state['filetext'] = file_contents
st.session_state['next_action'] = next_action
with col4:
if st.button("โถ๏ธ", key="read_" + file):
file_contents = load_file(file)
file_name = file
next_action = 'search'
st.session_state['next_action'] = next_action
with col5:
if st.button("๐", key="delete_" + file):
os.remove(file)
st.rerun()
if file_contents:
if next_action == 'open':
open1, open2 = st.columns([0.8, 0.2])
with open1:
file_name_input = st.text_input('File Name:', file_name, key='file_name_input')
file_content_area = st.text_area('File Contents:', file_contents, height=300, key='file_content_area')
if st.button('๐พ Save File'):
with open(file_name_input, 'w', encoding='utf-8') as f:
f.write(file_content_area)
st.markdown(f'Saved {file_name_input} successfully.')
elif next_action == 'search':
file_content_area = st.text_area("File Contents:", file_contents, height=500)
user_prompt = PromptPrefix2 + file_contents
st.markdown(user_prompt)
if st.button('๐Re-Code'):
search_arxiv(file_contents)
elif next_action == 'md':
st.markdown(file_contents)
SpeechSynthesis(file_contents)
if st.button("๐Run"):
st.write("Running GPT logic placeholder...")
# =====================================================================================
# 4) SCORING / GLOSSARIES
# =====================================================================================
score_dir = "scores"
os.makedirs(score_dir, exist_ok=True)
def generate_key(label, header, idx):
return f"{header}_{label}_{idx}_key"
def update_score(key, increment=1):
"""Increment the 'score' for a glossary item in JSON storage."""
score_file = os.path.join(score_dir, f"{key}.json")
if os.path.exists(score_file):
with open(score_file, "r") as file:
score_data = json.load(file)
else:
score_data = {"clicks": 0, "score": 0}
score_data["clicks"] += increment
score_data["score"] += increment
with open(score_file, "w") as file:
json.dump(score_data, file)
return score_data["score"]
def load_score(key):
"""Load the stored score from .json if it exists, else 0."""
file_path = os.path.join(score_dir, f"{key}.json")
if os.path.exists(file_path):
with open(file_path, "r") as file:
score_data = json.load(file)
return score_data["score"]
return 0
def display_buttons_with_scores(num_columns_text):
"""
Show glossary items as clickable buttons, each increments a 'score'.
"""
game_emojis = {
"Dungeons and Dragons": "๐",
"Call of Cthulhu": "๐",
"GURPS": "๐ฒ",
"Pathfinder": "๐บ๏ธ",
"Kindred of the East": "๐
",
"Changeling": "๐",
}
topic_emojis = {
"Core Rulebooks": "๐",
"Maps & Settings": "๐บ๏ธ",
"Game Mechanics & Tools": "โ๏ธ",
"Monsters & Adversaries": "๐น",
"Campaigns & Adventures": "๐",
"Creatives & Assets": "๐จ",
"Game Master Resources": "๐ ๏ธ",
"Lore & Background": "๐",
"Character Development": "๐ง",
"Homebrew Content": "๐ง",
"General Topics": "๐",
}
for category, games in roleplaying_glossary.items():
category_emoji = topic_emojis.get(category, "๐")
st.markdown(f"## {category_emoji} {category}")
for game, terms in games.items():
game_emoji = game_emojis.get(game, "๐ฎ")
for term in terms:
key = f"{category}_{game}_{term}".replace(' ', '_').lower()
score_val = load_score(key)
if st.button(f"{game_emoji} {category} {game} {term} {score_val}", key=key):
newscore = update_score(key.replace('?', ''))
st.markdown(f"Scored **{category} - {game} - {term}** -> {newscore}")
# =====================================================================================
# 5) IMAGES & VIDEOS
# =====================================================================================
def display_images_and_wikipedia_summaries(num_columns=4):
"""Display .png images in a grid, referencing the name as a 'keyword'."""
image_files = [f for f in os.listdir('.') if f.endswith('.png')]
if not image_files:
st.write("No PNG images found in the current directory.")
return
image_files_sorted = sorted(image_files, key=lambda x: len(x.split('.')[0]))
cols = st.columns(num_columns)
col_index = 0
for image_file in image_files_sorted:
with cols[col_index % num_columns]:
try:
image = Image.open(image_file)
st.image(image, use_column_width=True)
k = image_file.split('.')[0]
display_glossary_entity(k)
image_text_input = st.text_input(f"Prompt for {image_file}", key=f"image_prompt_{image_file}")
if image_text_input:
response = process_image(image_file, image_text_input)
st.markdown(response)
except:
st.write(f"Could not open {image_file}")
col_index += 1
def display_videos_and_links(num_columns=4):
"""Displays all .mp4/.webm in a grid, plus text input for prompts."""
video_files = [f for f in os.listdir('.') if f.endswith(('.mp4', '.webm'))]
if not video_files:
st.write("No MP4 or WEBM videos found in the current directory.")
return
video_files_sorted = sorted(video_files, key=lambda x: len(x.split('.')[0]))
cols = st.columns(num_columns)
col_index = 0
for video_file in video_files_sorted:
with cols[col_index % num_columns]:
k = video_file.split('.')[0]
st.video(video_file, format='video/mp4', start_time=0)
display_glossary_entity(k)
video_text_input = st.text_input(f"Video Prompt for {video_file}", key=f"video_prompt_{video_file}")
if video_text_input:
try:
seconds_per_frame = 10
process_video(video_file, seconds_per_frame)
except ValueError:
st.error("Invalid input for seconds per frame!")
col_index += 1
# =====================================================================================
# 6) MERMAID & PARTIAL SUBGRAPH LOGIC
# =====================================================================================
def generate_mermaid_html(mermaid_code: str) -> str:
"""Embed mermaid_code in a minimal HTML snippet, centered."""
return f"""
<html>
<head>
<script src="https://cdn.jsdelivr.net/npm/mermaid/dist/mermaid.min.js"></script>
<style>
.centered-mermaid {{
display: flex;
justify-content: center;
margin: 20px auto;
}}
.mermaid {{
max-width: 800px;
}}
</style>
</head>
<body>
<div class="mermaid centered-mermaid">
{mermaid_code}
</div>
<script>
mermaid.initialize({{ startOnLoad: true }});
</script>
</body>
</html>
"""
def append_model_param(url: str, model_selected: bool) -> str:
"""If user selects 'model=1', we append &model=1 or ?model=1 if not present."""
if not model_selected:
return url
delimiter = "&" if "?" in url else "?"
return f"{url}{delimiter}model=1"
def inject_base_url(url: str) -> str:
"""If link doesn't start with 'http', prepend BASE_URL so it's absolute."""
if url.startswith("http"):
return url
return f"{BASE_URL}{url}"
# Our default diagram, containing the "click" lines with /?q=...
DEFAULT_MERMAID = r"""
flowchart LR
U((User ๐)) -- "Talk ๐ฃ๏ธ" --> LLM[LLM Agent ๐ค\nExtract Info]
click U "/?q=User%20๐" "Open 'User ๐'" "_blank"
click LLM "/?q=LLM%20Agent%20Extract%20Info" "Open LLM" "_blank"
LLM -- "Query ๐" --> HS[Hybrid Search ๐\nVector+NER+Lexical]
click HS "/?q=Hybrid%20Search%20Vector+NER+Lexical" "Open HS" "_blank"
HS -- "Reason ๐ค" --> RE[Reasoning Engine ๐ ๏ธ\nNeuralNetwork+Medical]
click RE "/?q=Reasoning%20Engine%20NeuralNetwork+Medical" "Open RE" "_blank"
RE -- "Link ๐ก" --> KG((Knowledge Graph ๐\nOntology+GAR+RAG))
click KG "/?q=Knowledge%20Graph%20Ontology+GAR+RAG" "Open KG" "_blank"
"""
# BFS subgraph: we parse lines like A -- "Label" --> B
def parse_mermaid_edges(mermaid_text: str):
"""
๐ฟ parse_mermaid_edges:
- Find lines like: A -- "Label" --> B
- Return adjacency dict: edges[A] = [(label, B), ...]
"""
adjacency = {}
# e.g. U((User ๐)) -- "Talk ๐ฃ๏ธ" --> LLM[LLM Agent ๐ค\nExtract Info]
edge_pattern = re.compile(r'(\S+)\s*--\s*"([^"]*)"\s*-->\s*(\S+)')
for line in mermaid_text.split('\n'):
match = edge_pattern.search(line.strip())
if match:
nodeA, label, nodeB = match.groups()
if nodeA not in adjacency:
adjacency[nodeA] = []
adjacency[nodeA].append((label, nodeB))
return adjacency
def bfs_subgraph(adjacency, start_node, depth=1):
"""
๐ bfs_subgraph:
- Gather edges up to 'depth' levels from start_node
- If depth=1, only direct edges from node
"""
from collections import deque
visited = set()
queue = deque([(start_node, 0)])
edges = []
while queue:
current, lvl = queue.popleft()
if current in visited:
continue
visited.add(current)
if current in adjacency and lvl < depth:
for (label, child) in adjacency[current]:
edges.append((current, label, child))
queue.append((child, lvl + 1))
return edges
def create_subgraph_mermaid(sub_edges, start_node):
"""
๐ create_subgraph_mermaid:
- build a smaller flowchart snippet with edges from BFS
"""
sub_mermaid = "flowchart LR\n"
sub_mermaid += f" %% Subgraph for {start_node}\n"
if not sub_edges:
sub_mermaid += f" {start_node}\n"
sub_mermaid += " %% End of partial subgraph\n"
return sub_mermaid
for (A, label, B) in sub_edges:
sub_mermaid += f' {A} -- "{label}" --> {B}\n'
sub_mermaid += " %% End of partial subgraph\n"
return sub_mermaid
# =====================================================================================
# 7) MAIN APP
# =====================================================================================
def main():
st.set_page_config(page_title="Mermaid + BFS Subgraph + Full Logic", layout="wide")
# 1) Query param parsing
query_params = st.query_params
query_list = (query_params.get('q') or query_params.get('query') or [''])
q_or_query = query_list[0].strip() if len(query_list) > 0 else ""
# If 'action' param is present
if 'action' in query_params:
action_list = query_params['action']
if action_list:
action = action_list[0]
if action == 'show_message':
st.success("Showing a message because 'action=show_message' was found in the URL.")
elif action == 'clear':
clear_query_params()
# If there's a 'query=' param, display content or image
if 'query' in query_params:
query_val = query_params['query'][0]
display_content_or_image(query_val)
# 2) Let user pick ?model=1
st.sidebar.write("## Diagram Link Settings")
model_selected = st.sidebar.checkbox("Append ?model=1 to each link?")
# 3) We'll parse adjacency from DEFAULT_MERMAID, then do the injection for base URL
# and possible model param. We'll store the final mermaid code in session.
lines = DEFAULT_MERMAID.strip().split("\n")
new_lines = []
for line in lines:
if "click " in line and '"/?' in line:
# Try to parse out the URL via a simpler pattern
# e.g. click U "/?q=User%20๐" "Open 'User ๐'" "_blank"
# We'll do a quick re.split capturing 4 groups
# Example: [prefix, '/?q=User%20๐', "Open 'User ๐'", '_blank', remainder?]
pattern = r'(click\s+\S+\s+)"([^"]+)"\s+"([^"]+)"\s+"([^"]+)"'
match = re.match(pattern, line.strip())
if match:
prefix_part = match.group(1) # e.g. "click U "
old_url = match.group(2) # e.g. /?q=User%20๐
tooltip = match.group(3) # e.g. Open 'User ๐'
target = match.group(4) # e.g. _blank
# 1) base
new_url = inject_base_url(old_url)
# 2) model param
new_url = append_model_param(new_url, model_selected)
new_line = f'{prefix_part}"{new_url}" "{tooltip}" "{target}"'
new_lines.append(new_line)
else:
new_lines.append(line)
else:
new_lines.append(line)
final_mermaid = "\n".join(new_lines)
adjacency = parse_mermaid_edges(final_mermaid)
# 4) If user clicked a shape => we show a partial subgraph as "SearchResult"
partial_subgraph_html = ""
if q_or_query:
st.info(f"process_text called with: {PromptPrefix}{q_or_query}")
# Attempt to find a node whose ID or label includes q_or_query:
# We'll do a naive approach: if q_or_query is substring ignoring spaces
possible_keys = []
for nodeKey in adjacency.keys():
# e.g. nodeKey might be 'U((User ๐))'
simplified_key = nodeKey.replace("\\n", " ").replace("[", "").replace("]", "").lower()
simplified_query = q_or_query.lower().replace("%20", " ")
if simplified_query in simplified_key:
possible_keys.append(nodeKey)
chosen_node = None
if possible_keys:
chosen_node = possible_keys[0]
else:
st.warning("No adjacency node matched the query param's text. Subgraph is empty.")
if chosen_node:
sub_edges = bfs_subgraph(adjacency, chosen_node, depth=1)
sub_mermaid = create_subgraph_mermaid(sub_edges, chosen_node)
partial_subgraph_html = generate_mermaid_html(sub_mermaid)
# 5) Show partial subgraph top-center if we have any
if partial_subgraph_html:
st.subheader("SearchResult Subgraph")
components.html(partial_subgraph_html, height=300, scrolling=False)
# 6) Render the top-centered *full* diagram
st.title("Full Mermaid Diagram (with Base URL + BFS partial subgraphs)")
diagram_html = generate_mermaid_html(final_mermaid)
components.html(diagram_html, height=400, scrolling=True)
# 7) Editor columns: Markdown & Mermaid
left_col, right_col = st.columns(2)
with left_col:
st.subheader("Markdown Side ๐")
if "markdown_text" not in st.session_state:
st.session_state["markdown_text"] = "## Hello!\nYou can type some *Markdown* here.\n"
markdown_text = st.text_area(
"Edit Markdown:",
value=st.session_state["markdown_text"],
height=300
)
st.session_state["markdown_text"] = markdown_text
# Buttons
colA, colB = st.columns(2)
with colA:
if st.button("๐ Refresh Markdown"):
st.write("**Markdown** content refreshed! ๐ฟ")
with colB:
if st.button("โ Clear Markdown"):
st.session_state["markdown_text"] = ""
st.rerun()
st.markdown("---")
st.markdown("**Preview:**")
st.markdown(markdown_text)
with right_col:
st.subheader("Mermaid Side ๐งโโ๏ธ")
if "current_mermaid" not in st.session_state:
st.session_state["current_mermaid"] = final_mermaid
mermaid_input = st.text_area(
"Edit Mermaid Code:",
value=st.session_state["current_mermaid"],
height=300
)
colC, colD = st.columns(2)
with colC:
if st.button("๐จ Refresh Diagram"):
st.session_state["current_mermaid"] = mermaid_input
st.write("**Mermaid** diagram refreshed! ๐")
st.rerun()
with colD:
if st.button("โ Clear Mermaid"):
st.session_state["current_mermaid"] = ""
st.rerun()
st.markdown("---")
st.markdown("**Mermaid Source:**")
st.code(mermaid_input, language="python", line_numbers=True)
# 8) Show the galleries
st.markdown("---")
st.header("Media Galleries")
num_columns_images = st.slider("Choose Number of Image Columns", 1, 15, 5, key="num_columns_images")
display_images_and_wikipedia_summaries(num_columns_images)
num_columns_video = st.slider("Choose Number of Video Columns", 1, 15, 5, key="num_columns_video")
display_videos_and_links(num_columns_video)
# 9) Possibly show extended text interface
showExtendedTextInterface = False
if showExtendedTextInterface:
# e.g. display_glossary_grid(roleplaying_glossary)
# num_columns_text = st.slider("Choose Number of Text Columns", 1, 15, 4)
# display_buttons_with_scores(num_columns_text)
pass
# 10) Render the file sidebar
FileSidebar()
# 11) Random title at bottom
titles = [
"๐ง ๐ญ Semantic Symphonies & Episodic Encores",
"๐๐ผ AI Rhythms of Memory Lane",
"๐ญ๐ Cognitive Crescendos & Neural Harmonies",
"๐ง ๐บ Mnemonic Melodies & Synaptic Grooves",
"๐ผ๐ธ Straight Outta Cognition",
"๐ฅ๐ป Jazzy Jambalaya of AI Memories",
"๐ฐ Semantic Soul & Episodic Essence",
"๐ฅ๐ป The Music Of AI's Mind"
]
st.markdown(f"**{random.choice(titles)}**")
if __name__ == "__main__":
main()
|