Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import streamlit as st | |
import anthropic | |
import openai | |
import base64 | |
import cv2 | |
import glob | |
import os | |
import re | |
import asyncio | |
import edge_tts | |
from datetime import datetime | |
from collections import defaultdict | |
from dotenv import load_dotenv | |
from gradio_client import Client | |
from PIL import Image | |
# 🎯 1. Core Configuration & Setup | |
st.set_page_config( | |
page_title="🚲BikeAI🏆 Claude/GPT Research", | |
page_icon="🚲🏆", | |
layout="wide", | |
initial_sidebar_state="auto", | |
menu_items={ | |
'Get Help': 'https://huggingface.co/awacke1', | |
'Report a bug': 'https://huggingface.co/spaces/awacke1', | |
'About': "🚲BikeAI🏆 Claude/GPT Research AI" | |
} | |
) | |
load_dotenv() | |
# 🔑 2. API Setup & Clients | |
openai_api_key = os.getenv('OPENAI_API_KEY', "") | |
anthropic_key = os.getenv('ANTHROPIC_API_KEY', "") | |
if 'OPENAI_API_KEY' in st.secrets: | |
openai_api_key = st.secrets['OPENAI_API_KEY'] | |
if 'ANTHROPIC_API_KEY' in st.secrets: | |
anthropic_key = st.secrets["ANTHROPIC_API_KEY"] | |
openai.api_key = openai_api_key | |
claude_client = anthropic.Anthropic(api_key=anthropic_key) | |
# 📝 3. Session State Management | |
if 'parsed_papers' not in st.session_state: | |
st.session_state['parsed_papers'] = [] | |
if 'audio_generated' not in st.session_state: | |
st.session_state['audio_generated'] = {} | |
if 'voices' not in st.session_state: | |
st.session_state['voices'] = [] | |
if 'viewing_prefix' not in st.session_state: | |
st.session_state['viewing_prefix'] = None | |
if 'should_rerun' not in st.session_state: | |
st.session_state['should_rerun'] = False | |
# 🎨 4. Custom CSS | |
st.markdown(""" | |
<style> | |
.main { | |
background: linear-gradient(to right, #1a1a1a, #2d2d2d); | |
color: #fff; | |
} | |
.stMarkdown { | |
font-family: 'Helvetica Neue', sans-serif; | |
} | |
.stButton>button { | |
margin-right: 0.5rem; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
FILE_EMOJIS = { | |
"md": "📝", | |
"mp3": "🎵", | |
} | |
# 🧠 5. High-Information Content Extraction | |
def get_high_info_terms(text: str) -> list: | |
"""Extract high-information terms from text, including key phrases.""" | |
stop_words = set([ | |
'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', | |
'by', 'from', 'up', 'about', 'into', 'over', 'after', 'is', 'are', 'was', 'were', | |
'be', 'been', 'being', 'have', 'has', 'had', 'do', 'does', 'did', 'will', 'would', | |
'should', 'could', 'might', 'must', 'shall', 'can', 'may', 'this', 'that', 'these', | |
'those', 'i', 'you', 'he', 'she', 'it', 'we', 'they', 'what', 'which', 'who', | |
'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', | |
'other', 'some', 'such', 'than', 'too', 'very', 'just', 'there' | |
]) | |
key_phrases = [ | |
'artificial intelligence', 'machine learning', 'deep learning', 'neural network', | |
'personal assistant', 'natural language', 'computer vision', 'data science', | |
'reinforcement learning', 'knowledge graph', 'semantic search', 'time series', | |
'large language model', 'transformer model', 'attention mechanism', | |
'autonomous system', 'edge computing', 'quantum computing', 'blockchain technology', | |
'cognitive science', 'human computer', 'decision making', 'arxiv search', | |
'research paper', 'scientific study', 'empirical analysis' | |
] | |
# Identify key phrases | |
preserved_phrases = [] | |
lower_text = text.lower() | |
for phrase in key_phrases: | |
if phrase in lower_text: | |
preserved_phrases.append(phrase) | |
text = text.replace(phrase, '') | |
# Extract individual words | |
words = re.findall(r'\b\w+(?:-\w+)*\b', text) | |
high_info_words = [ | |
word.lower() for word in words | |
if len(word) > 3 | |
and word.lower() not in stop_words | |
and not word.isdigit() | |
and any(c.isalpha() for c in word) | |
] | |
all_terms = preserved_phrases + high_info_words | |
seen = set() | |
unique_terms = [] | |
for term in all_terms: | |
if term not in seen: | |
seen.add(term) | |
unique_terms.append(term) | |
max_terms = 5 | |
return unique_terms[:max_terms] | |
def clean_text_for_filename(text: str) -> str: | |
"""Remove punctuation and short filler words, return a compact string.""" | |
text = text.lower() | |
text = re.sub(r'[^\w\s-]', '', text) | |
words = text.split() | |
stop_short = set(['the','and','for','with','this','that','from','just','very','then','been','only','also','about']) | |
filtered = [w for w in words if len(w)>3 and w not in stop_short] | |
return '_'.join(filtered)[:200] | |
# 📁 6. File Operations | |
def generate_filename(prefix, title, file_type="md"): | |
""" | |
Generate filename with meaningful terms and prefix. | |
The filename includes a timestamp and a cleaned title. | |
""" | |
timestamp = datetime.now().strftime("%y%m_%H%M") | |
title_cleaned = clean_text_for_filename(title) | |
filename = f"{timestamp}_{prefix}_{title_cleaned}.{file_type}" | |
return filename | |
def create_md_file(paper): | |
"""Create Markdown file for a paper.""" | |
filename = generate_filename("paper", paper['title'], "md") | |
content = f"# {paper['title']}\n\n**Year:** {paper['year'] if paper['year'] else 'Unknown'}\n\n**Summary:**\n{paper['summary']}" | |
with open(filename, 'w', encoding='utf-8') as f: | |
f.write(content) | |
return filename | |
def get_download_link(file): | |
"""Generate download link for file.""" | |
with open(file, "rb") as f_file: | |
b64 = base64.b64encode(f_file.read()).decode() | |
mime_type = "audio/mpeg" if file.endswith(".mp3") else "text/markdown" | |
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file)}">📂 Download {os.path.basename(file)}</a>' | |
# 🔊 7. Audio Processing | |
def clean_for_speech(text: str) -> str: | |
"""Clean text for speech synthesis.""" | |
text = text.replace("\n", " ") | |
text = text.replace("</s>", " ") | |
text = text.replace("#", "") | |
text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text) | |
text = re.sub(r"\s+", " ", text).strip() | |
return text | |
async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0): | |
"""Generate audio using Edge TTS.""" | |
text = clean_for_speech(text) | |
if not text.strip(): | |
return None | |
rate_str = f"{rate:+d}%" | |
pitch_str = f"{pitch:+d}Hz" | |
communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str) | |
out_fn = generate_filename("audio", text[:50], "mp3") | |
await communicate.save(out_fn) | |
return out_fn | |
def speak_with_edge_tts(text, voice, rate=0, pitch=0): | |
"""Wrapper for Edge TTS generation.""" | |
try: | |
return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch)) | |
except Exception as e: | |
st.error(f"Error generating audio: {e}") | |
return None | |
def play_and_download_audio(file_path): | |
"""Play and provide download link for audio.""" | |
if file_path and os.path.exists(file_path): | |
st.audio(file_path) | |
dl_link = get_download_link(file_path) | |
st.markdown(dl_link, unsafe_allow_html=True) | |
# 🎬 8. Media Processing | |
def process_image(image_path, user_prompt): | |
"""Process image with GPT-4V.""" | |
with open(image_path, "rb") as imgf: | |
image_data = imgf.read() | |
b64img = base64.b64encode(image_data).decode("utf-8") | |
resp = openai.ChatCompletion.create( | |
model=st.session_state["openai_model"], | |
messages=[ | |
{"role": "system", "content": "You are a helpful assistant."}, | |
{"role": "user", "content": f"{user_prompt} Image data: data:image/png;base64,{b64img}"} | |
], | |
temperature=0.0, | |
) | |
return resp.choices[0].message.content | |
def process_audio_file(audio_path): | |
"""Process audio with Whisper.""" | |
with open(audio_path, "rb") as f: | |
transcription = openai.Audio.transcribe("whisper-1", f) | |
return transcription['text'] | |
def process_video(video_path, seconds_per_frame=1): | |
"""Extract frames from video.""" | |
vid = cv2.VideoCapture(video_path) | |
total = int(vid.get(cv2.CAP_PROP_FRAME_COUNT)) | |
fps = vid.get(cv2.CAP_PROP_FPS) | |
skip = int(fps * seconds_per_frame) | |
frames_b64 = [] | |
for i in range(0, total, skip): | |
vid.set(cv2.CAP_PROP_POS_FRAMES, i) | |
ret, frame = vid.read() | |
if not ret: | |
break | |
_, buf = cv2.imencode(".jpg", frame) | |
frames_b64.append(base64.b64encode(buf).decode("utf-8")) | |
vid.release() | |
return frames_b64 | |
def process_video_with_gpt(video_path, prompt): | |
"""Analyze video frames with GPT-4V.""" | |
frames = process_video(video_path) | |
combined_images = " ".join([f"data:image/jpeg;base64,{fr}" for fr in frames]) | |
resp = openai.ChatCompletion.create( | |
model=st.session_state["openai_model"], | |
messages=[ | |
{"role":"system","content":"Analyze the following video frames."}, | |
{"role":"user","content": f"{prompt} Frames: {combined_images}"} | |
] | |
) | |
return resp.choices[0].message.content | |
# 🤖 9. AI Model Integration | |
def parse_papers(transcript_text: str): | |
""" | |
Parse the transcript text into individual papers. | |
Assumes that each paper starts with a number and is enclosed in brackets for the title and year. | |
Example: | |
1) [Paper Title (2023)] This is the summary... | |
""" | |
papers = [] | |
# Split based on numbered entries | |
paper_blocks = re.split(r'\d+\)\s*\[', transcript_text) | |
for block in paper_blocks[1:]: # Skip the first split as it doesn't contain paper info | |
try: | |
title_year, summary = block.split(']', 1) | |
# Extract title and year using regex | |
title_match = re.match(r"(.+?)\s*\((\d{4})\)", title_year) | |
if title_match: | |
title = title_match.group(1).strip() | |
year = int(title_match.group(2)) | |
else: | |
title = title_year.strip() | |
year = None | |
summary = summary.strip() | |
papers.append({ | |
'title': title, | |
'year': year, | |
'summary': summary | |
}) | |
except ValueError: | |
continue # Skip blocks that don't match the expected format | |
return papers | |
def save_paper_files(paper, voice): | |
"""Generate and save Markdown and MP3 files for a paper.""" | |
# Create Markdown file | |
md_filename = create_md_file(paper) | |
# Generate audio for the entire paper | |
audio_text = f"{paper['title']}. {paper['summary']}" | |
audio_filename = speak_with_edge_tts(audio_text, voice) | |
return md_filename, audio_filename | |
def display_papers(papers, voice): | |
"""Display all papers with options to generate audio.""" | |
for idx, paper in enumerate(papers): | |
st.markdown(f"### {idx + 1}. {paper['title']} ({paper['year'] if paper['year'] else 'Unknown Year'})") | |
st.markdown(f"**Summary:** {paper['summary']}") | |
# Button to generate and play audio | |
if st.button(f"🔊 Read Aloud - {paper['title']}", key=f"read_aloud_{idx}"): | |
md_file, audio_file = save_paper_files(paper, voice) | |
if audio_file: | |
st.success("Audio generated successfully!") | |
play_and_download_audio(audio_file) | |
else: | |
st.error("Failed to generate audio.") | |
st.write("---") | |
def cache_parsed_papers(papers): | |
"""Cache the parsed papers.""" | |
st.session_state['parsed_papers'] = papers | |
def get_cached_papers(): | |
"""Retrieve cached papers.""" | |
return st.session_state.get('parsed_papers', []) | |
def save_full_transcript(query, text): | |
"""Save full transcript of Arxiv results as a file.""" | |
filename = generate_filename("transcript", query, "md") | |
with open(filename, 'w', encoding='utf-8') as f: | |
f.write(text) | |
return filename | |
def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, | |
titles_summary=True, full_audio=False, selected_voice="en-US-AriaNeural"): | |
"""Perform Arxiv search and generate audio summaries.""" | |
start = time.time() | |
# 🎯 1) Query the HF RAG pipeline | |
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") | |
refs = client.predict(q, 20, "Semantic Search", "mistralai/Mixtral-8x7B-Instruct-v0.1", api_name="/update_with_rag_md")[0] | |
r2 = client.predict(q, "mistralai/Mixtral-8x7B-Instruct-v0.1", True, api_name="/ask_llm") | |
# 🎯 2) Combine for final text output | |
clean_q = q.replace('\n', ' ') | |
result = f"### 🔎 {clean_q}\n\n{r2}\n\n{refs}" | |
st.markdown(result) | |
# 🎯 3) Parse papers from the references | |
parsed_papers = parse_papers(refs) | |
cache_parsed_papers(parsed_papers) | |
# 🎯 4) Display all parsed papers with options | |
st.write("## Individual Papers") | |
display_papers(parsed_papers, selected_voice) | |
elapsed = time.time() - start | |
st.write(f"**Total Elapsed:** {elapsed:.2f} s") | |
# Always create a file with the result | |
save_full_transcript(clean_q, result) | |
return result | |
# 📂 10. File Management | |
def create_zip_of_files(md_files, mp3_files): | |
"""Create zip with intelligent naming.""" | |
md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md'] | |
all_files = md_files + mp3_files | |
if not all_files: | |
return None | |
# Collect content for high-info term extraction | |
all_content = [] | |
for f in all_files: | |
if f.endswith('.md'): | |
with open(f, 'r', encoding='utf-8') as file: | |
all_content.append(file.read()) | |
elif f.endswith('.mp3'): | |
all_content.append(os.path.basename(f)) | |
combined_content = " ".join(all_content) | |
info_terms = get_high_info_terms(combined_content) | |
timestamp = datetime.now().strftime("%y%m_%H%M") | |
name_text = '_'.join(term.replace(' ', '-') for term in info_terms[:3]) | |
zip_name = f"{timestamp}_{name_text}.zip" | |
with zipfile.ZipFile(zip_name,'w') as z: | |
for f in all_files: | |
z.write(f) | |
return zip_name | |
def load_files_for_sidebar(): | |
"""Load and group files for sidebar display.""" | |
md_files = glob.glob("*.md") | |
mp3_files = glob.glob("*.mp3") | |
md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md'] | |
all_files = md_files + mp3_files | |
groups = defaultdict(list) | |
for f in all_files: | |
fname = os.path.basename(f) | |
prefix = fname[:10] | |
groups[prefix].append(f) | |
for prefix in groups: | |
groups[prefix].sort(key=lambda x: os.path.getmtime(x), reverse=True) | |
sorted_prefixes = sorted(groups.keys(), | |
key=lambda pre: max(os.path.getmtime(x) for x in groups[pre]), | |
reverse=True) | |
return groups, sorted_prefixes | |
def extract_keywords_from_md(files): | |
"""Extract keywords from markdown files.""" | |
text = "" | |
for f in files: | |
if f.endswith(".md"): | |
c = open(f,'r',encoding='utf-8').read() | |
text += " " + c | |
return get_high_info_terms(text) | |
def display_file_manager_sidebar(groups, sorted_prefixes): | |
"""Display file manager in sidebar.""" | |
st.sidebar.title("🎵 Audio & Docs Manager") | |
all_md = [] | |
all_mp3 = [] | |
for prefix in groups: | |
for f in groups[prefix]: | |
if f.endswith(".md"): | |
all_md.append(f) | |
elif f.endswith(".mp3"): | |
all_mp3.append(f) | |
top_bar = st.sidebar.columns(3) | |
with top_bar[0]: | |
if st.button("🗑 DelAllMD"): | |
for f in all_md: | |
os.remove(f) | |
st.session_state.should_rerun = True | |
with top_bar[1]: | |
if st.button("🗑 DelAllMP3"): | |
for f in all_mp3: | |
os.remove(f) | |
st.session_state.should_rerun = True | |
with top_bar[2]: | |
if st.button("⬇️ ZipAll"): | |
z = create_zip_of_files(all_md, all_mp3) | |
if z: | |
st.sidebar.markdown(get_download_link(z), unsafe_allow_html=True) | |
for prefix in sorted_prefixes: | |
files = groups[prefix] | |
kw = extract_keywords_from_md(files) | |
keywords_str = " ".join(kw) if kw else "No Keywords" | |
with st.sidebar.expander(f"{prefix} Files ({len(files)}) - KW: {keywords_str}", expanded=True): | |
c1, c2 = st.columns(2) | |
with c1: | |
if st.button("👀 View Group", key="view_group_"+prefix): | |
st.session_state.viewing_prefix = prefix | |
with c2: | |
if st.button("🗑 Delete Group", key="del_group_"+prefix): | |
for f in files: | |
os.remove(f) | |
st.success(f"Deleted group {prefix}!") | |
st.session_state.should_rerun = True | |
for f in files: | |
fname = os.path.basename(f) | |
ctime = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%Y-%m-%d %H:%M:%S") | |
st.write(f"**{fname}** - {ctime}") | |
# 🎯 11. Main Application | |
async def get_available_voices(): | |
voices = await edge_tts.list_voices() | |
return [voice["ShortName"] for voice in voices if voice["Locale"].startswith("en")] | |
def fetch_voices(): | |
return asyncio.run(get_available_voices()) | |
def main(): | |
st.sidebar.markdown("### 🚲BikeAI🏆 Multi-Agent Research") | |
tab_main = st.radio("Action:", ["🎤 Voice", "📸 Media", "🔍 ArXiv", "📝 Editor"], horizontal=True) | |
# Initialize voices if not already done | |
if not st.session_state['voices']: | |
st.session_state['voices'] = fetch_voices() | |
st.sidebar.markdown("### 🎤 Select Voice for Audio Generation") | |
selected_voice = st.sidebar.selectbox( | |
"Choose a voice:", | |
options=st.session_state['voices'], | |
index=st.session_state['voices'].index("en-US-AriaNeural") if "en-US-AriaNeural" in st.session_state['voices'] else 0 | |
) | |
# Main Tabs | |
if tab_main == "🔍 ArXiv": | |
st.subheader("🔍 Query ArXiv") | |
q = st.text_input("🔍 Query:").replace('\n', ' ') | |
st.markdown("### 🎛 Options") | |
vocal_summary = st.checkbox("🎙 Short Audio", value=True) | |
extended_refs = st.checkbox("📜 Long References", value=False) | |
titles_summary = st.checkbox("🔖 Titles Only", value=True) | |
full_audio = st.checkbox("📚 Full Audio", value=False, help="Generate full audio response") | |
full_transcript = st.checkbox("🧾 Full Transcript", value=False, help="Generate a full transcript file") | |
if q and st.button("🔍 Run"): | |
result = perform_ai_lookup( | |
q, | |
vocal_summary=vocal_summary, | |
extended_refs=extended_refs, | |
titles_summary=titles_summary, | |
full_audio=full_audio, | |
selected_voice=selected_voice | |
) | |
if full_transcript: | |
save_full_transcript(q, result) | |
st.markdown("### Change Prompt & Re-Run") | |
q_new = st.text_input("🔄 Modify Query:").replace('\n', ' ') | |
if q_new and st.button("🔄 Re-Run with Modified Query"): | |
result = perform_ai_lookup( | |
q_new, | |
vocal_summary=vocal_summary, | |
extended_refs=extended_refs, | |
titles_summary=titles_summary, | |
full_audio=full_audio, | |
selected_voice=selected_voice | |
) | |
if full_transcript: | |
save_full_transcript(q_new, result) | |
elif tab_main == "🎤 Voice": | |
st.subheader("🎤 Voice Input") | |
user_text = st.text_area("💬 Message:", height=100) | |
user_text = user_text.strip().replace('\n', ' ') | |
if st.button("📨 Send"): | |
process_with_gpt(user_text) | |
st.subheader("📜 Chat History") | |
t1, t2 = st.tabs(["Claude History", "GPT-4o History"]) | |
with t1: | |
for c in st.session_state.get('chat_history', []): | |
st.write("**You:**", c["user"]) | |
st.write("**Claude:**", c["claude"]) | |
with t2: | |
for m in st.session_state.get('messages', []): | |
with st.chat_message(m["role"]): | |
st.markdown(m["content"]) | |
elif tab_main == "📸 Media": | |
st.header("📸 Images & 🎥 Videos") | |
tabs = st.tabs(["🖼 Images", "🎥 Video"]) | |
with tabs[0]: | |
imgs = glob.glob("*.png") + glob.glob("*.jpg") | |
if imgs: | |
cols = st.columns(min(5, len(imgs))) | |
for i, f in enumerate(imgs[:20]): | |
with cols[i % len(cols)]: | |
st.image(Image.open(f), use_container_width=True) | |
if st.button(f"👀 Analyze {os.path.basename(f)}", key=f"analyze_{f}"): | |
analysis = process_image(f, "Describe this image.") | |
st.markdown(analysis) | |
else: | |
st.write("No images found.") | |
with tabs[1]: | |
vids = glob.glob("*.mp4")[:20] | |
if vids: | |
for v in vids: | |
with st.expander(f"🎥 {os.path.basename(v)}"): | |
st.video(v) | |
if st.button(f"Analyze {os.path.basename(v)}", key=f"analyze_{v}"): | |
analysis = process_video_with_gpt(v, "Describe video.") | |
st.markdown(analysis) | |
else: | |
st.write("No videos found.") | |
elif tab_main == "📝 Editor": | |
st.subheader("📝 Editor") | |
files = glob.glob("*.md") | |
if files: | |
selected_file = st.selectbox("Select a file to edit:", files) | |
if selected_file: | |
with open(selected_file, 'r', encoding='utf-8') as f: | |
file_content = f.read() | |
new_text = st.text_area("✏️ Content:", file_content, height=300) | |
if st.button("💾 Save"): | |
with open(selected_file, 'w', encoding='utf-8') as f: | |
f.write(new_text) | |
st.success("File updated successfully!") | |
st.session_state.should_rerun = True | |
else: | |
st.write("No Markdown files available for editing.") | |
# File Manager Sidebar | |
groups, sorted_prefixes = load_files_for_sidebar() | |
display_file_manager_sidebar(groups, sorted_prefixes) | |
if st.session_state.viewing_prefix and st.session_state.viewing_prefix in groups: | |
st.write("---") | |
st.write(f"**Viewing Group:** {st.session_state.viewing_prefix}") | |
for f in groups[st.session_state.viewing_prefix]: | |
fname = os.path.basename(f) | |
ext = os.path.splitext(fname)[1].lower().strip('.') | |
st.write(f"### {fname}") | |
if ext == "md": | |
with open(f, 'r', encoding='utf-8') as file: | |
content = file.read() | |
st.markdown(content) | |
elif ext == "mp3": | |
st.audio(f) | |
else: | |
st.markdown(get_download_link(f), unsafe_allow_html=True) | |
if st.button("❌ Close"): | |
st.session_state.viewing_prefix = None | |
if st.session_state.should_rerun: | |
st.session_state.should_rerun = False | |
st.experimental_rerun() | |
def process_with_gpt(text): | |
"""Process text with GPT-4.""" | |
if not text: | |
return | |
# Initialize messages if not present | |
if 'messages' not in st.session_state: | |
st.session_state['messages'] = [] | |
st.session_state['messages'].append({"role":"user","content":text}) | |
with st.chat_message("user"): | |
st.markdown(text) | |
with st.chat_message("assistant"): | |
try: | |
response = openai.ChatCompletion.create( | |
model=st.session_state["openai_model"], | |
messages=st.session_state['messages'], | |
stream=False | |
) | |
ans = response.choices[0].message.content | |
st.write("GPT-4o: " + ans) | |
create_md_file({"title": "User Query", "year": None, "summary": ans}) | |
st.session_state['messages'].append({"role":"assistant","content":ans}) | |
except Exception as e: | |
st.error(f"Error processing with GPT-4: {e}") | |
def process_with_claude(text): | |
"""Process text with Claude.""" | |
if not text: | |
return | |
# Initialize chat_history if not present | |
if 'chat_history' not in st.session_state: | |
st.session_state['chat_history'] = [] | |
with st.chat_message("user"): | |
st.markdown(text) | |
with st.chat_message("assistant"): | |
try: | |
response = claude_client.messages.create( | |
model="claude-3-sonnet-20240229", | |
max_tokens=1000, | |
messages=[{"role":"user","content":text}] | |
) | |
ans = response.content[0].text | |
st.write("Claude-3.5: " + ans) | |
create_md_file({"title": "User Query", "year": None, "summary": ans}) | |
st.session_state['chat_history'].append({"user":text,"claude":ans}) | |
except Exception as e: | |
st.error(f"Error processing with Claude: {e}") | |
# Run the application | |
if __name__=="__main__": | |
main() | |