awacke1's picture
Update app.py
ffd10f7 verified
raw
history blame
27.4 kB
import streamlit as st
import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, time, zipfile
import plotly.graph_objects as go
import streamlit.components.v1 as components
from datetime import datetime
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import defaultdict, deque
from dotenv import load_dotenv
from gradio_client import Client
from huggingface_hub import InferenceClient
from io import BytesIO
from PIL import Image
from PyPDF2 import PdfReader
from urllib.parse import quote
from xml.etree import ElementTree as ET
from openai import OpenAI
import extra_streamlit_components as stx
from streamlit.runtime.scriptrunner import get_script_run_ctx
import asyncio
import edge_tts
# 1. Core Configuration & Setup
st.set_page_config(
page_title="🚲BikeAI🏆 Research Assistant Pro",
page_icon="🚲🏆",
layout="wide",
initial_sidebar_state="auto",
menu_items={
'Get Help': 'https://huggingface.co/awacke1',
'Report a bug': 'https://huggingface.co/spaces/awacke1',
'About': "Research Assistant Pro with Voice Search"
}
)
load_dotenv()
# 2. API Setup & Clients
openai_api_key = os.getenv('OPENAI_API_KEY', st.secrets.get('OPENAI_API_KEY', ''))
anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', st.secrets.get('ANTHROPIC_API_KEY', ''))
hf_key = os.getenv('HF_KEY', st.secrets.get('HF_KEY', ''))
openai_client = OpenAI(api_key=openai_api_key)
claude_client = anthropic.Anthropic(api_key=anthropic_key)
# 3. Session State Management
if 'transcript_history' not in st.session_state:
st.session_state['transcript_history'] = []
if 'chat_history' not in st.session_state:
st.session_state['chat_history'] = []
if 'openai_model' not in st.session_state:
st.session_state['openai_model'] = "gpt-4-vision-preview"
if 'messages' not in st.session_state:
st.session_state['messages'] = []
if 'last_voice_input' not in st.session_state:
st.session_state['last_voice_input'] = ""
if 'editing_file' not in st.session_state:
st.session_state['editing_file'] = None
if 'current_audio' not in st.session_state:
st.session_state['current_audio'] = None
if 'autoplay_audio' not in st.session_state:
st.session_state['autoplay_audio'] = True
if 'should_rerun' not in st.session_state:
st.session_state['should_rerun'] = False
if 'old_val' not in st.session_state:
st.session_state['old_val'] = None
# 4. Style Definitions
st.markdown("""
<style>
.main { background: linear-gradient(to right, #1a1a1a, #2d2d2d); color: #fff; }
.stMarkdown { font-family: 'Helvetica Neue', sans-serif; }
.stButton>button {
margin-right: 0.5rem;
background-color: #4CAF50;
color: white;
padding: 0.5rem 1rem;
border-radius: 5px;
border: none;
transition: background-color 0.3s;
}
.stButton>button:hover {
background-color: #45a049;
}
.audio-player {
margin: 1rem 0;
padding: 1rem;
border-radius: 10px;
background: white;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.file-manager {
padding: 1rem;
background: white;
border-radius: 10px;
margin: 1rem 0;
}
</style>
""", unsafe_allow_html=True)
FILE_EMOJIS = {
"md": "📝",
"mp3": "🎵",
"mp4": "🎥",
"png": "🖼️",
"jpg": "📸"
}
# 5. Voice Recognition Component
def create_voice_component():
"""Create auto-searching voice recognition component"""
return components.html(
"""
<div style="padding: 20px; border-radius: 10px; background: #f0f2f6;">
<div id="status" style="margin-bottom: 10px; color: #666;">Starting voice recognition...</div>
<div id="interim" style="color: #666; min-height: 24px;"></div>
<div id="output" style="margin-top: 10px; padding: 10px; min-height: 100px;
background: white; border-radius: 5px; white-space: pre-wrap;"></div>
<script>
if ('webkitSpeechRecognition' in window) {
const recognition = new webkitSpeechRecognition();
recognition.continuous = true;
recognition.interimResults = true;
const status = document.getElementById('status');
const interim = document.getElementById('interim');
const output = document.getElementById('output');
let fullTranscript = '';
let lastPauseTime = Date.now();
let pauseThreshold = 1500; // Time in ms to wait before triggering search
// Auto-start on load
window.addEventListener('load', () => {
setTimeout(() => {
try {
recognition.start();
status.textContent = 'Listening...';
} catch (e) {
console.error('Start error:', e);
status.textContent = 'Error starting recognition';
}
}, 1000);
});
recognition.onresult = (event) => {
let interimTranscript = '';
let finalTranscript = '';
for (let i = event.resultIndex; i < event.results.length; i++) {
const transcript = event.results[i][0].transcript;
if (event.results[i].isFinal) {
finalTranscript += transcript + ' ';
lastPauseTime = Date.now();
} else {
interimTranscript += transcript;
}
}
if (finalTranscript) {
fullTranscript += finalTranscript;
interim.textContent = '';
output.textContent = fullTranscript;
// Send to Streamlit for processing
window.parent.postMessage({
type: 'streamlit:setComponentValue',
value: fullTranscript,
dataType: 'json',
}, '*');
} else if (interimTranscript) {
interim.textContent = '... ' + interimTranscript;
}
output.scrollTop = output.scrollHeight;
};
// Check for pauses and trigger search
setInterval(() => {
if (fullTranscript && Date.now() - lastPauseTime > pauseThreshold) {
if (output.dataset.lastProcessed !== fullTranscript) {
output.dataset.lastProcessed = fullTranscript;
window.parent.postMessage({
type: 'streamlit:setComponentValue',
value: {
text: fullTranscript,
trigger: 'pause'
},
dataType: 'json',
}, '*');
}
}
}, 500);
recognition.onend = () => {
try {
recognition.start();
status.textContent = 'Listening...';
} catch (e) {
console.error('Restart error:', e);
status.textContent = 'Recognition stopped. Refresh to restart.';
}
};
recognition.onerror = (event) => {
console.error('Recognition error:', event.error);
status.textContent = 'Error: ' + event.error;
};
} else {
document.getElementById('status').textContent = 'Speech recognition not supported in this browser';
}
</script>
</div>
""",
height=200
)
# Available English voices
ENGLISH_VOICES = [
"en-US-AriaNeural", # Female, conversational
"en-US-JennyNeural", # Female, customer service
"en-US-GuyNeural", # Male, newscast
"en-US-RogerNeural", # Male, calm
"en-GB-SoniaNeural", # British female
"en-GB-RyanNeural", # British male
"en-AU-NatashaNeural", # Australian female
"en-AU-WilliamNeural", # Australian male
"en-CA-ClaraNeural", # Canadian female
"en-CA-LiamNeural", # Canadian male
"en-IE-EmilyNeural", # Irish female
"en-IE-ConnorNeural", # Irish male
"en-IN-NeerjaNeural", # Indian female
"en-IN-PrabhatNeural", # Indian male
]
def render_search_interface():
"""Render main search interface with auto-search voice component"""
st.header("🔍 Voice Search")
# Voice settings
col1, col2 = st.columns([2, 1])
with col1:
selected_voice = st.selectbox(
"Select Voice",
ENGLISH_VOICES,
index=0,
help="Choose the voice for audio responses"
)
with col2:
auto_search = st.checkbox("Auto-Search on Pause", value=True)
# Voice component
voice_result = create_voice_component()
# Handle voice input
if voice_result and isinstance(voice_result, (str, dict)):
# Extract text and trigger info
if isinstance(voice_result, dict):
current_text = voice_result.get('text', '')
trigger = voice_result.get('trigger')
else:
current_text = voice_result
trigger = None
# Process on pause trigger if enabled
if auto_search and trigger == 'pause' and current_text:
if current_text != st.session_state.get('last_processed_text', ''):
st.session_state.last_processed_text = current_text
# Show the detected text
st.info(f"🎤 Detected: {current_text}")
# Perform search
try:
with st.spinner("Searching and generating audio response..."):
response, audio_file = asyncio.run(
process_voice_search(
current_text,
voice=selected_voice
)
)
if response:
st.markdown(response)
if audio_file:
render_audio_result(audio_file, "Search Results")
# Save to history
st.session_state.transcript_history.append({
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
'query': current_text,
'response': response,
'audio': audio_file
})
except Exception as e:
st.error(f"Error processing search: {str(e)}")
# Manual search option
with st.expander("📝 Manual Search", expanded=False):
query = st.text_input("Search Query:", value=st.session_state.get('last_processed_text', ''))
if st.button("🔍 Search"):
try:
with st.spinner("Searching and generating audio..."):
response, audio_file = asyncio.run(
process_voice_search(
query,
voice=selected_voice
)
)
if response:
st.markdown(response)
if audio_file:
render_audio_result(audio_file)
except Exception as e:
st.error(f"Error processing search: {str(e)}")
# 6. Audio Processing Functions
def get_autoplay_audio_html(audio_path, width="100%"):
"""Create HTML for autoplaying audio with controls"""
try:
with open(audio_path, "rb") as audio_file:
audio_bytes = audio_file.read()
audio_b64 = base64.b64encode(audio_bytes).decode()
return f'''
<audio controls autoplay style="width: {width};">
<source src="data:audio/mpeg;base64,{audio_b64}" type="audio/mpeg">
Your browser does not support the audio element.
</audio>
<div style="margin-top: 5px;">
<a href="data:audio/mpeg;base64,{audio_b64}"
download="{os.path.basename(audio_path)}"
style="text-decoration: none;">
⬇️ Download Audio
</a>
</div>
'''
except Exception as e:
return f"Error loading audio: {str(e)}"
def clean_for_speech(text: str) -> str:
"""Clean text for speech synthesis"""
text = text.replace("\n", " ")
text = text.replace("</s>", " ")
text = text.replace("#", "")
text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text)
text = re.sub(r"\s+", " ", text).strip()
return text
async def generate_audio(text, voice="en-US-AriaNeural", rate="+0%", pitch="+0Hz"):
"""Generate audio using Edge TTS"""
text = clean_for_speech(text)
if not text.strip():
return None
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_file = f"response_{timestamp}.mp3"
communicate = edge_tts.Communicate(text, voice, rate=rate, pitch=pitch)
await communicate.save(output_file)
return output_file
def render_audio_result(audio_file, title="Generated Audio"):
"""Render audio result with autoplay in Streamlit"""
if audio_file and os.path.exists(audio_file):
st.markdown(f"### {title}")
st.markdown(get_autoplay_audio_html(audio_file), unsafe_allow_html=True)
# 7. File Operations
def generate_filename(text, response="", file_type="md"):
"""Generate intelligent filename"""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
safe_text = re.sub(r'[^\w\s-]', '', text[:50])
return f"{timestamp}_{safe_text}.{file_type}"
def create_file(text, response, file_type="md"):
"""Create file with content"""
filename = generate_filename(text, response, file_type)
with open(filename, 'w', encoding='utf-8') as f:
f.write(f"{text}\n\n{response}")
return filename
def get_download_link(file_path):
"""Generate download link for file"""
with open(file_path, "rb") as file:
contents = file.read()
b64 = base64.b64encode(contents).decode()
file_name = os.path.basename(file_path)
return f'<a href="data:file/txt;base64,{b64}" download="{file_name}">⬇️ Download {file_name}</a>'
# 8. Search and Process Functions
def perform_arxiv_search(query, response_type="summary"):
"""Enhanced Arxiv search with voice response"""
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
# Get search results and AI interpretation
refs = client.predict(
query, 20, "Semantic Search",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
api_name="/update_with_rag_md"
)[0]
summary = client.predict(
query,
"mistralai/Mixtral-8x7B-Instruct-v0.1",
True,
api_name="/ask_llm"
)
# Format response
response = f"### 🔎 Search Results for: {query}\n\n{summary}\n\n### 📚 References\n\n{refs}"
return response, refs
async def process_voice_search(query):
"""Process voice search with automatic audio"""
response, refs = perform_arxiv_search(query)
# Generate audio from response
audio_file = await generate_audio(response)
# Update state
st.session_state.current_audio = audio_file
return response, audio_file
def process_with_gpt(text):
"""Process text with GPT-4"""
if not text:
return
st.session_state.messages.append({"role": "user", "content": text})
with st.chat_message("user"):
st.markdown(text)
with st.chat_message("assistant"):
response = openai_client.chat.completions.create(
model=st.session_state.openai_model,
messages=st.session_state.messages,
stream=False
)
answer = response.choices[0].message.content
st.write(f"GPT-4: {answer}")
# Generate audio response
audio_file = asyncio.run(generate_audio(answer))
if audio_file:
render_audio_result(audio_file, "GPT-4 Response")
# Save response
create_file(text, answer, "md")
st.session_state.messages.append({"role": "assistant", "content": answer})
return answer
def process_with_claude(text):
"""Process text with Claude"""
if not text:
return
with st.chat_message("user"):
st.markdown(text)
with st.chat_message("assistant"):
response = claude_client.messages.create(
model="claude-3-sonnet-20240229",
max_tokens=1000,
messages=[{"role": "user", "content": text}]
)
answer = response.content[0].text
st.write(f"Claude-3: {answer}")
# Generate audio response
audio_file = asyncio.run(generate_audio(answer))
if audio_file:
render_audio_result(audio_file, "Claude Response")
# Save response
create_file(text, answer, "md")
st.session_state.chat_history.append({"user": text, "claude": answer})
return answer
# 9. UI Components
def render_search_interface():
"""Render main search interface with voice component"""
st.header("🔍 Voice Search")
# Voice component with autorun
voice_text = create_voice_component()
# Handle voice input
if voice_text and isinstance(voice_text, (str, dict)):
# Convert dict to string if necessary
current_text = voice_text if isinstance(voice_text, str) else voice_text.get('value', '')
# Compare with last processed text
if current_text and current_text != st.session_state.get('last_voice_text', ''):
st.session_state.last_voice_text = current_text
# Clean the text
cleaned_text = current_text.replace('\n', ' ').strip()
# Process with selected model
if st.session_state.autoplay_audio and cleaned_text:
try:
response, audio_file = asyncio.run(process_voice_search(cleaned_text))
if response:
st.markdown(response)
if audio_file:
render_audio_result(audio_file, "Search Results")
except Exception as e:
st.error(f"Error processing voice search: {str(e)}")
# Manual search option
with st.expander("📝 Manual Search", expanded=False):
col1, col2 = st.columns([3, 1])
with col1:
query = st.text_input("Enter search query:")
with col2:
if st.button("🔍 Search"):
try:
response, audio_file = asyncio.run(process_voice_search(query))
if response:
st.markdown(response)
if audio_file:
render_audio_result(audio_file)
except Exception as e:
st.error(f"Error processing search: {str(e)}")
def display_file_manager():
"""Display file manager with media preview"""
st.sidebar.title("📁 File Manager")
files = {
'Documents': glob.glob("*.md"),
'Audio': glob.glob("*.mp3"),
'Video': glob.glob("*.mp4"),
'Images': glob.glob("*.png") + glob.glob("*.jpg")
}
# Top actions
col1, col2 = st.sidebar.columns(2)
with col1:
if st.button("🗑 Delete All"):
for category in files.values():
for file in category:
os.remove(file)
st.rerun()
with col2:
if st.button("⬇️ Download All"):
zip_name = f"archive_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip"
with zipfile.ZipFile(zip_name, 'w') as zipf:
for category in files.values():
for file in category:
zipf.write(file)
st.sidebar.markdown(get_download_link(zip_name), unsafe_allow_html=True)
# Display files by category
for category, category_files in files.items():
if category_files:
with st.sidebar.expander(f"{FILE_EMOJIS.get(category.lower(), '📄')} {category} ({len(category_files)})", expanded=True):
for file in sorted(category_files, key=os.path.getmtime, reverse=True):
col1, col2, col3 = st.columns([3, 1, 1])
with col1:
st.markdown(f"**{os.path.basename(file)}**")
with col2:
st.markdown(get_download_link(file), unsafe_allow_html=True)
with col3:
if st.button("🗑", key=f"del_{file}"):
os.remove(file)
st.rerun()
def display_media_gallery():
"""Display media files in gallery format"""
media_tabs = st.tabs(["🎵 Audio", "🎥 Video", "📷 Images"])
with media_tabs[0]:
audio_files = glob.glob("*.mp3")
if audio_files:
for audio_file in audio_files:
st.markdown(get_autoplay_audio_html(audio_file), unsafe_allow_html=True)
else:
st.write("No audio files found")
with media_tabs[1]:
video_files = glob.glob("*.mp4")
if video_files:
cols = st.columns(2)
for idx, video_file in enumerate(video_files):
with cols[idx % 2]:
st.video(video_file)
else:
st.write("No video files found")
with media_tabs[2]:
image_files = glob.glob("*.png") + glob.glob("*.jpg")
if image_files:
cols = st.columns(3)
for idx, image_file in enumerate(image_files):
with cols[idx % 3]:
st.image(Image.open(image_file), use_column_width=True)
if st.button(f"Analyze {os.path.basename(image_file)}", key=f"analyze_{image_file}"):
with st.spinner("Analyzing image..."):
analysis = process_with_gpt(f"Analyze this image: {image_file}")
st.markdown(analysis)
else:
st.write("No images found")
def display_search_history():
"""Display search history with audio playback"""
st.header("Search History")
history_tabs = st.tabs(["🔍 Voice Searches", "💬 Chat History"])
with history_tabs[0]:
for entry in reversed(st.session_state.transcript_history):
with st.expander(f"🔍 {entry['timestamp']} - {entry['query'][:50]}...", expanded=False):
st.markdown(entry['response'])
if entry.get('audio'):
render_audio_result(entry['audio'], "Recorded Response")
with history_tabs[1]:
chat_tabs = st.tabs(["Claude History", "GPT-4 History"])
with chat_tabs[0]:
for chat in st.session_state.chat_history:
st.markdown(f"**You:** {chat['user']}")
st.markdown(f"**Claude:** {chat['claude']}")
st.markdown("---")
with chat_tabs[1]:
for msg in st.session_state.messages:
with st.chat_message(msg["role"]):
st.markdown(msg["content"])
# Main Application
def main():
st.title("🔬 Research Assistant Pro")
# Initialize autorun setting
if 'autorun' not in st.session_state:
st.session_state.autorun = True
# Settings sidebar
with st.sidebar:
st.title("⚙️ Settings")
st.session_state.autorun = st.checkbox("Enable Autorun", value=True)
st.subheader("Voice Settings")
voice_options = [
"en-US-AriaNeural",
"en-US-GuyNeural",
"en-GB-SoniaNeural",
"en-AU-NatashaNeural"
]
selected_voice = st.selectbox("Select Voice", voice_options)
st.subheader("Audio Settings")
rate = st.slider("Speech Rate", -50, 50, 0, 5)
pitch = st.slider("Pitch", -50, 50, 0, 5)
st.session_state.autoplay_audio = st.checkbox(
"Autoplay Audio",
value=True,
help="Automatically play audio when generated"
)
# Main content tabs
tabs = st.tabs(["🎤 Voice Search", "📚 History", "🎵 Media", "⚙️ Advanced"])
with tabs[0]:
render_search_interface()
with tabs[1]:
display_search_history()
with tabs[2]:
display_media_gallery()
with tabs[3]:
st.header("Advanced Settings")
col1, col2 = st.columns(2)
with col1:
st.subheader("Model Settings")
st.selectbox(
"Default Search Model",
["Claude-3", "GPT-4", "Mixtral-8x7B"],
key="default_model"
)
st.number_input(
"Max Results",
min_value=5,
max_value=50,
value=20,
key="max_results"
)
with col2:
st.subheader("Audio Settings")
st.slider(
"Max Audio Duration (seconds)",
min_value=30,
max_value=300,
value=120,
step=30,
key="max_audio_duration"
)
st.checkbox(
"High Quality Audio",
value=True,
key="high_quality_audio"
)
# File manager sidebar
display_file_manager()
# Handle rerun if needed
if st.session_state.get('should_rerun', False):
st.session_state.should_rerun = False
st.rerun()
if __name__ == "__main__":
main()