awacke1's picture
Update app.py
d881b0d verified
raw
history blame
7.94 kB
import os
import base64
import re
import requests
import pytz
import json
from io import BytesIO
from datetime import datetime
import gradio as gr
import openai
import fitz # pymupdf
from bs4 import BeautifulSoup
from moviepy.video.io.VideoFileClip import VideoFileClip
# 🔐 CONFIG
KEY_FILE = "openai_api_key.txt"
MODEL = "gpt-4o-2024-05-13"
# 🍿 Default key load
if os.path.exists(KEY_FILE):
with open(KEY_FILE, 'r') as f:
DEFAULT_KEY = f.read().strip()
else:
DEFAULT_KEY = ''
# 🔧 HELPERS
def save_api_key(api_key):
with open(KEY_FILE, 'w') as f:
f.write(api_key.strip())
return "🔑 Key saved!"
# 🗒️ Chat
def chat_with_openai(api_key, user_message, history):
openai.api_key = api_key.strip()
messages = []
for u, a in history:
messages.append({"role": "user", "content": u})
messages.append({"role": "assistant", "content": a})
messages.append({"role": "user", "content": user_message})
resp = openai.ChatCompletion.create(model=MODEL, messages=messages)
answer = resp.choices[0].message.content
history.append((user_message, answer))
return history
# 🖼️ Image analysis
def image_to_base64(file):
return base64.b64encode(file.read()).decode()
def analyze_image(api_key, file, prompt):
data_uri = f"data:image/png;base64,{image_to_base64(file)}"
openai.api_key = api_key.strip()
resp = openai.ChatCompletion.create(
model=MODEL,
messages=[
{"role": "system", "content": "You are a helpful assistant that responds in Markdown."},
{"role": "user", "content": [
{"type":"text","text":prompt},
{"type":"image_url","image_url":{"url":data_uri}}
]}
]
)
return resp.choices[0].message.content
# 🎤 Audio transcription + chat
def transcribe_audio_file(api_key, file):
openai.api_key = api_key.strip()
resp = openai.Audio.transcriptions.create(model="whisper-1", file=file)
return resp.text
# 🎥 Video summarize
def summarize_video(api_key, file, prompt, seconds=2):
# save tmp
with open("tmp_vid.mp4", 'wb') as f: f.write(file.read())
clip = VideoFileClip("tmp_vid.mp4")
frames = []
step = int(clip.fps * seconds)
for t in range(0, int(clip.duration), seconds):
frame = clip.get_frame(t)
buf = BytesIO()
from PIL import Image
Image.fromarray(frame).save(buf, format='JPEG')
frames.append(base64.b64encode(buf.getvalue()).decode())
transcript = transcribe_audio_file(api_key, open("tmp_vid.mp4", 'rb'))
openai.api_key = api_key.strip()
messages = [{"role":"system","content":"You are a helpful assistant."},
{"role":"user","content": prompt}]
for f64 in frames:
messages.append({"role":"user","content": {"type":"image_url","image_url":{"url":f"data:image/jpeg;base64,{f64}"}}})
messages.append({"role":"user","content": f"Transcript: {transcript}"})
resp = openai.ChatCompletion.create(model=MODEL, messages=messages)
return resp.choices[0].message.content
# 📄 PDF->Markdown
def pdf_to_markdown(path):
doc = fitz.open(path)
md = ''
for page in doc:
md += page.get_text('markdown') + '\n'
return md
# 🔍 ArXiv RAG
from gradio_client import Client
def arxiv_search(query):
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
refs = client.predict(query, 10, "Semantic Search - up to 10 Mar 2024", "mistralai/Mixtral-8x7B-Instruct-v0.1", api_name="/update_with_rag_md")
ans = client.predict(query, "mistralai/Mixtral-8x7B-Instruct-v0.1", True, api_name="/ask_llm")
return refs + "\n" + ans
# 🔈 TTS
from gtts import gTTS
def tts_bytes(text):
buf = BytesIO()
gTTS(text=text, lang='en').write_to_fp(buf)
buf.seek(0)
return buf.read()
# UI CONFIG
ui_config = {
"chat": {"label":"💬 ChatGPT-4o", "placeholder":"Say something..."},
"image_prompt": {"label":"🖼️ Image Prompt", "default":"Describe this image..."},
"audio_prompt": {"label":"🎤 Audio Prompt", "default":"Transcribe and summarize..."},
"video_prompt": {"label":"🎥 Video Prompt", "default":"Summarize this video..."},
"pdf_prompt": {"label":"📄 PDF Prompt", "default":"Convert PDF to markdown..."},
"arxiv_prompt": {"label":"🔍 Arxiv Query", "default":"Search papers..."}
}
with gr.Blocks(title="🔬🧠 ScienceBrain.Gradio") as demo:
gr.Markdown("# 🔬🧠 ScienceBrain Gradio
Enter API key below."
)
with gr.Row():
api_key = gr.Textbox(label="🔑 OpenAI Key", value=DEFAULT_KEY, type="password")
save_btn = gr.Button("💾 Save Key")
status = gr.Textbox(label="Status", interactive=False)
save_btn.click(save_api_key, inputs=api_key, outputs=status)
# Tabs for each modality
with gr.Tab("💬 Chat"):
chatbot = gr.Chatbot(label=ui_config['chat']['label'], value=[])
msg = gr.Textbox(label=ui_config['chat']['label'], placeholder=ui_config['chat']['placeholder'])
msg.submit(chat_with_openai, inputs=[api_key, msg, chatbot], outputs=chatbot)
with gr.Tab("🖼️ Image"):
img_in = gr.File(file_types=['png','jpg','jpeg'])
img_prompt = gr.Textbox(label=ui_config['image_prompt']['label'], value=ui_config['image_prompt']['default'])
img_btn = gr.Button("🔍 Analyze Image")
img_out = gr.Markdown()
img_btn.click(analyze_image, inputs=[api_key, img_in, img_prompt], outputs=img_out)
with gr.Tab("🎤 Audio"):
aud_in = gr.File(file_types=['wav','mp3'])
aud_btn = gr.Button("🔊 Transcribe + Chat")
aud_out = gr.Markdown()
def audio_pipeline(key, f):
text = transcribe_audio_file(key, f)
reply = chat_with_openai(key, text, [])[-1][1]
return f"**Transcript:** {text}\n\n**Reply:** {reply}"
aud_btn.click(audio_pipeline, inputs=[api_key, aud_in], outputs=aud_out)
with gr.Tab("🎥 Video"):
vid_in = gr.File(file_types=['mp4'])
vid_prompt = gr.Textbox(label=ui_config['video_prompt']['label'], value=ui_config['video_prompt']['default'])
vid_btn = gr.Button("🎞️ Summarize Video")
vid_out = gr.Markdown()
vid_btn.click(summarize_video, inputs=[api_key, vid_in, vid_prompt], outputs=vid_out)
with gr.Tab("📄 PDF"):
pdf_in = gr.File(file_types=['pdf'])
pdf_btn = gr.Button("📝 Convert PDF")
pdf_out = gr.Markdown()
pdf_btn.click(lambda f: pdf_to_markdown(f.name), inputs=[pdf_in], outputs=pdf_out)
with gr.Tab("🔍 ArXiv"):
arxiv_in = gr.Textbox(label=ui_config['arxiv_prompt']['label'], value=ui_config['arxiv_prompt']['default'])
arxiv_btn = gr.Button("🔎 Search ArXiv")
arxiv_out = gr.Markdown()
arxiv_btn.click(arxiv_search, inputs=[arxiv_in], outputs=arxiv_out)
with gr.Tab("⚙️ Quick Tests"):
tests = [
("📝 Text","What is 2+2?"),
("🖼️ Image","Analyze image https://via.placeholder.com/150.png"),
("🎤 Audio","Transcribe https://www2.cs.uic.edu/~i101/SoundFiles/gettysburg10.wav"),
("🎥 Video","Summarize video https://sample-videos.com/video123/mp4/240/big_buck_bunny_240p_1mb.mp4"),
("🖼️+📝 Img+Txt","Given image https://via.placeholder.com/150.png list 3 facts."),
("🎤+📝 Aud+Txt","Given audio https://www2.cs.uic.edu/~i101/SoundFiles/gettysburg10.wav summarize."),
("🎥+📝 Vid+Txt","Given video https://sample-videos.com/video123/mp4/240/big_buck_bunny_240p_1mb.mp4 transcript+summary.")
]
for idx, (e,p) in enumerate(tests,1):
btn = gr.Button(f"{idx}. {e} Test")
btn.click(chat_with_openai, inputs=[api_key, gr.State(p), gr.State([])], outputs=chatbot)
if __name__ == "__main__":
demo.launch()