File size: 12,105 Bytes
d999fe5 811cdf9 d999fe5 811cdf9 d999fe5 811cdf9 d999fe5 811cdf9 d999fe5 811cdf9 d999fe5 811cdf9 d999fe5 811cdf9 d999fe5 811cdf9 d999fe5 811cdf9 d999fe5 811cdf9 d999fe5 811cdf9 d999fe5 811cdf9 d999fe5 811cdf9 d999fe5 811cdf9 d999fe5 811cdf9 d999fe5 811cdf9 d999fe5 811cdf9 d999fe5 811cdf9 d999fe5 811cdf9 d999fe5 811cdf9 d999fe5 811cdf9 d999fe5 811cdf9 d999fe5 811cdf9 d999fe5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
#!/usr/bin/env python3
import os
import base64
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from PIL import Image
import gradio as gr
import torchvision.transforms as transforms
from transformers import AutoModel, AutoTokenizer
from diffusers import StableDiffusionPipeline
from torch.utils.data import Dataset, DataLoader
import asyncio
import aiofiles
import fitz # PyMuPDF
import requests
import logging
from io import BytesIO
from dataclasses import dataclass
from typing import Optional
# Logging setup
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
# Neural network layers for line drawing
norm_layer = nn.InstanceNorm2d
# Residual Block for Generator
class ResidualBlock(nn.Module):
def __init__(self, in_features):
super(ResidualBlock, self).__init__()
conv_block = [
nn.ReflectionPad2d(1),
nn.Conv2d(in_features, in_features, 3),
norm_layer(in_features),
nn.ReLU(inplace=True),
nn.ReflectionPad2d(1),
nn.Conv2d(in_features, in_features, 3),
norm_layer(in_features)
]
self.conv_block = nn.Sequential(*conv_block)
def forward(self, x):
return x + self.conv_block(x)
# Generator for Line Drawings
class Generator(nn.Module):
def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
super(Generator, self).__init__()
model0 = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, 64, 7), norm_layer(64), nn.ReLU(inplace=True)]
self.model0 = nn.Sequential(*model0)
model1 = []
in_features, out_features = 64, 128
for _ in range(2):
model1 += [nn.Conv2d(in_features, out_features, 3, stride=2, padding=1), norm_layer(out_features), nn.ReLU(inplace=True)]
in_features, out_features = out_features, out_features * 2
self.model1 = nn.Sequential(*model1)
model2 = [ResidualBlock(in_features) for _ in range(n_residual_blocks)]
self.model2 = nn.Sequential(*model2)
model3 = []
out_features = in_features // 2
for _ in range(2):
model3 += [nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1), norm_layer(out_features), nn.ReLU(inplace=True)]
in_features, out_features = out_features, out_features // 2
self.model3 = nn.Sequential(*model3)
model4 = [nn.ReflectionPad2d(3), nn.Conv2d(64, output_nc, 7)]
if sigmoid:
model4 += [nn.Sigmoid()]
self.model4 = nn.Sequential(*model4)
def forward(self, x, cond=None):
out = self.model0(x)
out = self.model1(out)
out = self.model2(out)
out = self.model3(out)
out = self.model4(out)
return out
# Load Line Drawing Models
model1 = Generator(3, 1, 3)
model2 = Generator(3, 1, 3)
try:
model1.load_state_dict(torch.load('model.pth', map_location='cpu', weights_only=True))
model2.load_state_dict(torch.load('model2.pth', map_location='cpu', weights_only=True))
except FileNotFoundError:
logger.warning("Model files not found. Please ensure 'model.pth' and 'model2.pth' are available.")
model1.eval()
model2.eval()
# Tiny Diffusion Model
class TinyUNet(nn.Module):
def __init__(self, in_channels=3, out_channels=3):
super(TinyUNet, self).__init__()
self.down1 = nn.Conv2d(in_channels, 32, 3, padding=1)
self.down2 = nn.Conv2d(32, 64, 3, padding=1, stride=2)
self.mid = nn.Conv2d(64, 128, 3, padding=1)
self.up1 = nn.ConvTranspose2d(128, 64, 3, stride=2, padding=1, output_padding=1)
self.up2 = nn.Conv2d(64 + 32, 32, 3, padding=1)
self.out = nn.Conv2d(32, out_channels, 3, padding=1)
self.time_embed = nn.Linear(1, 64)
def forward(self, x, t):
t_embed = F.relu(self.time_embed(t.unsqueeze(-1))).view(t_embed.size(0), t_embed.size(1), 1, 1)
x1 = F.relu(self.down1(x))
x2 = F.relu(self.down2(x1))
x_mid = F.relu(self.mid(x2)) + t_embed
x_up1 = F.relu(self.up1(x_mid))
x_up2 = F.relu(self.up2(torch.cat([x_up1, x1], dim=1)))
return self.out(x_up2)
class TinyDiffusion:
def __init__(self, model, timesteps=100):
self.model = model
self.timesteps = timesteps
self.beta = torch.linspace(0.0001, 0.02, timesteps)
self.alpha = 1 - self.beta
self.alpha_cumprod = torch.cumprod(self.alpha, dim=0)
def train(self, images, epochs=10):
dataset = [torch.tensor(np.array(img.convert("RGB")).transpose(2, 0, 1), dtype=torch.float32) / 255.0 for img in images]
dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
optimizer = torch.optim.Adam(self.model.parameters(), lr=1e-4)
device = torch.device("cpu")
self.model.to(device)
for epoch in range(epochs):
total_loss = 0
for x in dataloader:
x = x.to(device)
t = torch.randint(0, self.timesteps, (x.size(0),), device=device).float()
noise = torch.randn_like(x)
alpha_t = self.alpha_cumprod[t.long()].view(-1, 1, 1, 1)
x_noisy = torch.sqrt(alpha_t) * x + torch.sqrt(1 - alpha_t) * noise
pred_noise = self.model(x_noisy, t)
loss = F.mse_loss(pred_noise, noise)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
logger.info(f"Epoch {epoch + 1}/{epochs}, Loss: {total_loss / len(dataloader):.4f}")
return self
def generate(self, size=(64, 64), steps=100):
device = torch.device("cpu")
x = torch.randn(1, 3, size[0], size[1], device=device)
for t in reversed(range(steps)):
t_tensor = torch.full((1,), t, device=device, dtype=torch.float32)
alpha_t = self.alpha_cumprod[t].view(-1, 1, 1, 1)
pred_noise = self.model(x, t_tensor)
x = (x - (1 - self.alpha[t]) / torch.sqrt(1 - alpha_t) * pred_noise) / torch.sqrt(self.alpha[t])
if t > 0:
x += torch.sqrt(self.beta[t]) * torch.randn_like(x)
x = torch.clamp(x * 255, 0, 255).byte()
return Image.fromarray(x.squeeze(0).permute(1, 2, 0).cpu().numpy())
# Utility Functions
def generate_filename(sequence, ext="png"):
timestamp = time.strftime("%d%m%Y%H%M%S")
return f"{sequence}_{timestamp}.{ext}"
def predict_line_drawing(input_img, ver):
original_img = Image.open(input_img) if isinstance(input_img, str) else input_img
original_size = original_img.size
transform = transforms.Compose([
transforms.Resize(256, Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
input_tensor = transform(original_img).unsqueeze(0)
with torch.no_grad():
output = model2(input_tensor) if ver == 'Simple Lines' else model1(input_tensor)
output_img = transforms.ToPILImage()(output.squeeze().cpu().clamp(0, 1))
return output_img.resize(original_size, Image.BICUBIC)
async def process_ocr(image):
tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True)
model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
result = model.chat(tokenizer, image, ocr_type='ocr')
output_file = generate_filename("ocr_output", "txt")
async with aiofiles.open(output_file, "w") as f:
await f.write(result)
return result, output_file
async def process_diffusion(images):
unet = TinyUNet()
diffusion = TinyDiffusion(unet)
diffusion.train(images)
gen_image = diffusion.generate()
output_file = generate_filename("diffusion_output", "png")
gen_image.save(output_file)
return gen_image, output_file
def download_pdf(url):
output_path = f"pdf_{int(time.time())}.pdf"
response = requests.get(url, stream=True, timeout=10)
if response.status_code == 200:
with open(output_path, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
return output_path
return None
# Gradio Blocks UI
with gr.Blocks(title="Mystical AI Vision Studio π", css="""
.gr-button {background-color: #4CAF50; color: white;}
.gr-tab {border: 2px solid #2196F3; border-radius: 5px;}
#gallery img {border: 1px solid #ddd; border-radius: 4px;}
""") as demo:
gr.Markdown("<h1 style='text-align: center; color: #2196F3;'>Mystical AI Vision Studio π</h1>")
gr.Markdown("<p style='text-align: center;'>Transform images into line drawings, extract text with OCR, and craft unique art with diffusion!</p>")
with gr.Tab("Image to Line Drawings π¨"):
with gr.Row():
with gr.Column():
img_input = gr.Image(type="pil", label="Upload Image")
version = gr.Radio(['Complex Lines', 'Simple Lines'], label='Style', value='Simple Lines')
submit_btn = gr.Button("Generate Line Drawing")
with gr.Column():
line_output = gr.Image(type="pil", label="Line Drawing")
download_btn = gr.Button("Download Output")
submit_btn.click(predict_line_drawing, inputs=[img_input, version], outputs=line_output)
download_btn.click(lambda x: gr.File(x, label="Download Line Drawing"), inputs=line_output, outputs=None)
with gr.Tab("OCR Vision π"):
with gr.Row():
with gr.Column():
ocr_input = gr.Image(type="pil", label="Upload Image or PDF Snapshot")
ocr_btn = gr.Button("Extract Text")
with gr.Column():
ocr_text = gr.Textbox(label="Extracted Text", interactive=False)
ocr_file = gr.File(label="Download OCR Result")
async def run_ocr(img):
result, file_path = await process_ocr(img)
return result, file_path
ocr_btn.click(run_ocr, inputs=ocr_input, outputs=[ocr_text, ocr_file])
with gr.Tab("Custom Diffusion π¨π€"):
with gr.Row():
with gr.Column():
diffusion_input = gr.File(label="Upload Images for Training", multiple=True)
diffusion_btn = gr.Button("Train & Generate")
with gr.Column():
diffusion_output = gr.Image(type="pil", label="Generated Art")
diffusion_file = gr.File(label="Download Art")
async def run_diffusion(files):
images = [Image.open(BytesIO(f.read())) for f in files]
img, file_path = await process_diffusion(images)
return img, file_path
diffusion_btn.click(run_diffusion, inputs=diffusion_input, outputs=[diffusion_output, diffusion_file])
with gr.Tab("PDF Downloader π₯"):
with gr.Row():
pdf_url = gr.Textbox(label="Enter PDF URL")
pdf_btn = gr.Button("Download PDF")
pdf_output = gr.File(label="Downloaded PDF")
pdf_btn.click(download_pdf, inputs=pdf_url, outputs=pdf_output)
with gr.Tab("Gallery πΈ"):
gallery = gr.Gallery(label="Processed Outputs", elem_id="gallery")
def update_gallery():
files = [f for f in os.listdir('.') if f.endswith(('.png', '.txt', '.pdf'))]
return [f for f in files]
gr.Button("Refresh Gallery").click(update_gallery, outputs=gallery)
# JavaScript for dynamic UI enhancements
gr.HTML("""
<script>
document.addEventListener('DOMContentLoaded', () => {
const buttons = document.querySelectorAll('.gr-button');
buttons.forEach(btn => {
btn.addEventListener('mouseover', () => btn.style.backgroundColor = '#45a049');
btn.addEventListener('mouseout', () => btn.style.backgroundColor = '#4CAF50');
});
});
</script>
""")
demo.launch() |