File size: 12,105 Bytes
d999fe5
 
 
 
811cdf9
 
d999fe5
 
811cdf9
d999fe5
811cdf9
d999fe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
811cdf9
d999fe5
811cdf9
 
d999fe5
811cdf9
 
 
d999fe5
 
 
 
 
 
 
 
 
811cdf9
 
 
 
 
d999fe5
811cdf9
 
 
d999fe5
811cdf9
 
d999fe5
811cdf9
d999fe5
 
811cdf9
d999fe5
811cdf9
 
d999fe5
811cdf9
d999fe5
 
811cdf9
d999fe5
811cdf9
 
 
 
 
 
 
 
 
 
 
 
d999fe5
811cdf9
 
d999fe5
 
 
 
 
 
811cdf9
 
d999fe5
 
 
 
 
 
 
 
 
 
 
811cdf9
d999fe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
811cdf9
 
 
 
 
d999fe5
 
 
 
 
811cdf9
d999fe5
 
 
 
 
 
 
 
811cdf9
d999fe5
 
 
 
 
 
 
 
811cdf9
d999fe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
811cdf9
d999fe5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
#!/usr/bin/env python3
import os
import base64
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from PIL import Image
import gradio as gr
import torchvision.transforms as transforms
from transformers import AutoModel, AutoTokenizer
from diffusers import StableDiffusionPipeline
from torch.utils.data import Dataset, DataLoader
import asyncio
import aiofiles
import fitz  # PyMuPDF
import requests
import logging
from io import BytesIO
from dataclasses import dataclass
from typing import Optional

# Logging setup
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)

# Neural network layers for line drawing
norm_layer = nn.InstanceNorm2d

# Residual Block for Generator
class ResidualBlock(nn.Module):
    def __init__(self, in_features):
        super(ResidualBlock, self).__init__()
        conv_block = [
            nn.ReflectionPad2d(1),
            nn.Conv2d(in_features, in_features, 3),
            norm_layer(in_features),
            nn.ReLU(inplace=True),
            nn.ReflectionPad2d(1),
            nn.Conv2d(in_features, in_features, 3),
            norm_layer(in_features)
        ]
        self.conv_block = nn.Sequential(*conv_block)

    def forward(self, x):
        return x + self.conv_block(x)

# Generator for Line Drawings
class Generator(nn.Module):
    def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
        super(Generator, self).__init__()
        model0 = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, 64, 7), norm_layer(64), nn.ReLU(inplace=True)]
        self.model0 = nn.Sequential(*model0)
        model1 = []
        in_features, out_features = 64, 128
        for _ in range(2):
            model1 += [nn.Conv2d(in_features, out_features, 3, stride=2, padding=1), norm_layer(out_features), nn.ReLU(inplace=True)]
            in_features, out_features = out_features, out_features * 2
        self.model1 = nn.Sequential(*model1)
        model2 = [ResidualBlock(in_features) for _ in range(n_residual_blocks)]
        self.model2 = nn.Sequential(*model2)
        model3 = []
        out_features = in_features // 2
        for _ in range(2):
            model3 += [nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1), norm_layer(out_features), nn.ReLU(inplace=True)]
            in_features, out_features = out_features, out_features // 2
        self.model3 = nn.Sequential(*model3)
        model4 = [nn.ReflectionPad2d(3), nn.Conv2d(64, output_nc, 7)]
        if sigmoid:
            model4 += [nn.Sigmoid()]
        self.model4 = nn.Sequential(*model4)

    def forward(self, x, cond=None):
        out = self.model0(x)
        out = self.model1(out)
        out = self.model2(out)
        out = self.model3(out)
        out = self.model4(out)
        return out

# Load Line Drawing Models
model1 = Generator(3, 1, 3)
model2 = Generator(3, 1, 3)
try:
    model1.load_state_dict(torch.load('model.pth', map_location='cpu', weights_only=True))
    model2.load_state_dict(torch.load('model2.pth', map_location='cpu', weights_only=True))
except FileNotFoundError:
    logger.warning("Model files not found. Please ensure 'model.pth' and 'model2.pth' are available.")
model1.eval()
model2.eval()

# Tiny Diffusion Model
class TinyUNet(nn.Module):
    def __init__(self, in_channels=3, out_channels=3):
        super(TinyUNet, self).__init__()
        self.down1 = nn.Conv2d(in_channels, 32, 3, padding=1)
        self.down2 = nn.Conv2d(32, 64, 3, padding=1, stride=2)
        self.mid = nn.Conv2d(64, 128, 3, padding=1)
        self.up1 = nn.ConvTranspose2d(128, 64, 3, stride=2, padding=1, output_padding=1)
        self.up2 = nn.Conv2d(64 + 32, 32, 3, padding=1)
        self.out = nn.Conv2d(32, out_channels, 3, padding=1)
        self.time_embed = nn.Linear(1, 64)

    def forward(self, x, t):
        t_embed = F.relu(self.time_embed(t.unsqueeze(-1))).view(t_embed.size(0), t_embed.size(1), 1, 1)
        x1 = F.relu(self.down1(x))
        x2 = F.relu(self.down2(x1))
        x_mid = F.relu(self.mid(x2)) + t_embed
        x_up1 = F.relu(self.up1(x_mid))
        x_up2 = F.relu(self.up2(torch.cat([x_up1, x1], dim=1)))
        return self.out(x_up2)

class TinyDiffusion:
    def __init__(self, model, timesteps=100):
        self.model = model
        self.timesteps = timesteps
        self.beta = torch.linspace(0.0001, 0.02, timesteps)
        self.alpha = 1 - self.beta
        self.alpha_cumprod = torch.cumprod(self.alpha, dim=0)

    def train(self, images, epochs=10):
        dataset = [torch.tensor(np.array(img.convert("RGB")).transpose(2, 0, 1), dtype=torch.float32) / 255.0 for img in images]
        dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
        optimizer = torch.optim.Adam(self.model.parameters(), lr=1e-4)
        device = torch.device("cpu")
        self.model.to(device)
        for epoch in range(epochs):
            total_loss = 0
            for x in dataloader:
                x = x.to(device)
                t = torch.randint(0, self.timesteps, (x.size(0),), device=device).float()
                noise = torch.randn_like(x)
                alpha_t = self.alpha_cumprod[t.long()].view(-1, 1, 1, 1)
                x_noisy = torch.sqrt(alpha_t) * x + torch.sqrt(1 - alpha_t) * noise
                pred_noise = self.model(x_noisy, t)
                loss = F.mse_loss(pred_noise, noise)
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
                total_loss += loss.item()
            logger.info(f"Epoch {epoch + 1}/{epochs}, Loss: {total_loss / len(dataloader):.4f}")
        return self

    def generate(self, size=(64, 64), steps=100):
        device = torch.device("cpu")
        x = torch.randn(1, 3, size[0], size[1], device=device)
        for t in reversed(range(steps)):
            t_tensor = torch.full((1,), t, device=device, dtype=torch.float32)
            alpha_t = self.alpha_cumprod[t].view(-1, 1, 1, 1)
            pred_noise = self.model(x, t_tensor)
            x = (x - (1 - self.alpha[t]) / torch.sqrt(1 - alpha_t) * pred_noise) / torch.sqrt(self.alpha[t])
            if t > 0:
                x += torch.sqrt(self.beta[t]) * torch.randn_like(x)
        x = torch.clamp(x * 255, 0, 255).byte()
        return Image.fromarray(x.squeeze(0).permute(1, 2, 0).cpu().numpy())

# Utility Functions
def generate_filename(sequence, ext="png"):
    timestamp = time.strftime("%d%m%Y%H%M%S")
    return f"{sequence}_{timestamp}.{ext}"

def predict_line_drawing(input_img, ver):
    original_img = Image.open(input_img) if isinstance(input_img, str) else input_img
    original_size = original_img.size
    transform = transforms.Compose([
        transforms.Resize(256, Image.BICUBIC),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])
    input_tensor = transform(original_img).unsqueeze(0)
    with torch.no_grad():
        output = model2(input_tensor) if ver == 'Simple Lines' else model1(input_tensor)
    output_img = transforms.ToPILImage()(output.squeeze().cpu().clamp(0, 1))
    return output_img.resize(original_size, Image.BICUBIC)

async def process_ocr(image):
    tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True)
    model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
    result = model.chat(tokenizer, image, ocr_type='ocr')
    output_file = generate_filename("ocr_output", "txt")
    async with aiofiles.open(output_file, "w") as f:
        await f.write(result)
    return result, output_file

async def process_diffusion(images):
    unet = TinyUNet()
    diffusion = TinyDiffusion(unet)
    diffusion.train(images)
    gen_image = diffusion.generate()
    output_file = generate_filename("diffusion_output", "png")
    gen_image.save(output_file)
    return gen_image, output_file

def download_pdf(url):
    output_path = f"pdf_{int(time.time())}.pdf"
    response = requests.get(url, stream=True, timeout=10)
    if response.status_code == 200:
        with open(output_path, "wb") as f:
            for chunk in response.iter_content(chunk_size=8192):
                f.write(chunk)
        return output_path
    return None

# Gradio Blocks UI
with gr.Blocks(title="Mystical AI Vision Studio 🌌", css="""
    .gr-button {background-color: #4CAF50; color: white;}
    .gr-tab {border: 2px solid #2196F3; border-radius: 5px;}
    #gallery img {border: 1px solid #ddd; border-radius: 4px;}
""") as demo:
    gr.Markdown("<h1 style='text-align: center; color: #2196F3;'>Mystical AI Vision Studio 🌌</h1>")
    gr.Markdown("<p style='text-align: center;'>Transform images into line drawings, extract text with OCR, and craft unique art with diffusion!</p>")

    with gr.Tab("Image to Line Drawings 🎨"):
        with gr.Row():
            with gr.Column():
                img_input = gr.Image(type="pil", label="Upload Image")
                version = gr.Radio(['Complex Lines', 'Simple Lines'], label='Style', value='Simple Lines')
                submit_btn = gr.Button("Generate Line Drawing")
            with gr.Column():
                line_output = gr.Image(type="pil", label="Line Drawing")
                download_btn = gr.Button("Download Output")
        submit_btn.click(predict_line_drawing, inputs=[img_input, version], outputs=line_output)
        download_btn.click(lambda x: gr.File(x, label="Download Line Drawing"), inputs=line_output, outputs=None)

    with gr.Tab("OCR Vision πŸ”"):
        with gr.Row():
            with gr.Column():
                ocr_input = gr.Image(type="pil", label="Upload Image or PDF Snapshot")
                ocr_btn = gr.Button("Extract Text")
            with gr.Column():
                ocr_text = gr.Textbox(label="Extracted Text", interactive=False)
                ocr_file = gr.File(label="Download OCR Result")
        async def run_ocr(img):
            result, file_path = await process_ocr(img)
            return result, file_path
        ocr_btn.click(run_ocr, inputs=ocr_input, outputs=[ocr_text, ocr_file])

    with gr.Tab("Custom Diffusion πŸŽ¨πŸ€“"):
        with gr.Row():
            with gr.Column():
                diffusion_input = gr.File(label="Upload Images for Training", multiple=True)
                diffusion_btn = gr.Button("Train & Generate")
            with gr.Column():
                diffusion_output = gr.Image(type="pil", label="Generated Art")
                diffusion_file = gr.File(label="Download Art")
        async def run_diffusion(files):
            images = [Image.open(BytesIO(f.read())) for f in files]
            img, file_path = await process_diffusion(images)
            return img, file_path
        diffusion_btn.click(run_diffusion, inputs=diffusion_input, outputs=[diffusion_output, diffusion_file])

    with gr.Tab("PDF Downloader πŸ“₯"):
        with gr.Row():
            pdf_url = gr.Textbox(label="Enter PDF URL")
            pdf_btn = gr.Button("Download PDF")
            pdf_output = gr.File(label="Downloaded PDF")
        pdf_btn.click(download_pdf, inputs=pdf_url, outputs=pdf_output)

    with gr.Tab("Gallery πŸ“Έ"):
        gallery = gr.Gallery(label="Processed Outputs", elem_id="gallery")
        def update_gallery():
            files = [f for f in os.listdir('.') if f.endswith(('.png', '.txt', '.pdf'))]
            return [f for f in files]
        gr.Button("Refresh Gallery").click(update_gallery, outputs=gallery)

    # JavaScript for dynamic UI enhancements
    gr.HTML("""
    <script>
        document.addEventListener('DOMContentLoaded', () => {
            const buttons = document.querySelectorAll('.gr-button');
            buttons.forEach(btn => {
                btn.addEventListener('mouseover', () => btn.style.backgroundColor = '#45a049');
                btn.addEventListener('mouseout', () => btn.style.backgroundColor = '#4CAF50');
            });
        });
    </script>
    """)

demo.launch()