File size: 33,487 Bytes
615bd5f
 
44308c6
615bd5f
 
 
 
 
 
 
 
 
6893dd3
 
615bd5f
6893dd3
615bd5f
 
 
 
6893dd3
44308c6
615bd5f
 
 
 
 
5c99a8d
 
6893dd3
5c99a8d
c252fa6
 
 
 
 
 
 
6893dd3
5c99a8d
6893dd3
6e8c55b
6893dd3
 
 
 
 
 
6e8c55b
6893dd3
 
 
5c99a8d
 
 
 
 
 
 
 
457db8f
 
 
 
 
 
 
5c99a8d
6893dd3
 
 
 
 
 
 
457db8f
 
6893dd3
5c99a8d
6893dd3
 
 
 
615bd5f
6893dd3
457db8f
 
 
 
 
 
 
 
 
615bd5f
 
 
 
 
 
457db8f
 
6893dd3
 
457db8f
 
 
 
 
 
6893dd3
457db8f
 
 
 
 
 
c252fa6
6893dd3
 
 
 
 
c252fa6
6893dd3
 
 
615bd5f
6893dd3
 
c252fa6
6893dd3
 
c252fa6
6893dd3
 
 
457db8f
 
 
c252fa6
457db8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c252fa6
 
457db8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
615bd5f
457db8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c99a8d
457db8f
 
5c99a8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
457db8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c99a8d
457db8f
 
 
 
 
 
615bd5f
457db8f
 
 
6e8c55b
457db8f
6e8c55b
457db8f
 
 
 
 
 
 
 
 
 
6e8c55b
457db8f
6e8c55b
457db8f
 
 
 
 
 
 
 
 
 
 
615bd5f
457db8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c252fa6
 
 
6e8c55b
 
 
c252fa6
 
 
6e8c55b
 
 
 
 
 
457db8f
615bd5f
6e8c55b
 
 
 
c252fa6
6e8c55b
 
457db8f
6e8c55b
457db8f
6e8c55b
 
615bd5f
 
 
457db8f
 
615bd5f
6e8c55b
 
 
615bd5f
6e8c55b
615bd5f
c252fa6
615bd5f
457db8f
 
6893dd3
457db8f
5c99a8d
615bd5f
457db8f
 
 
 
 
 
 
 
5c99a8d
457db8f
 
 
 
 
 
 
 
 
c252fa6
457db8f
 
 
 
 
 
 
 
 
 
 
5c99a8d
457db8f
 
 
 
 
 
 
 
615bd5f
457db8f
 
 
5c99a8d
457db8f
 
 
 
 
 
 
 
794b68e
457db8f
c252fa6
615bd5f
457db8f
 
615bd5f
 
457db8f
615bd5f
457db8f
 
 
 
615bd5f
 
457db8f
 
 
 
 
 
 
 
 
 
 
5c99a8d
457db8f
615bd5f
457db8f
 
6e8c55b
457db8f
6e8c55b
457db8f
 
6e8c55b
457db8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e8c55b
457db8f
615bd5f
 
457db8f
 
 
 
 
 
 
 
 
 
 
 
 
 
615bd5f
457db8f
 
 
615bd5f
457db8f
 
 
 
 
 
 
615bd5f
457db8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
615bd5f
457db8f
 
 
 
 
 
 
 
 
615bd5f
 
457db8f
 
 
 
 
 
 
 
 
 
 
 
615bd5f
457db8f
 
 
 
615bd5f
457db8f
 
615bd5f
 
457db8f
 
615bd5f
457db8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
615bd5f
 
 
457db8f
 
 
 
615bd5f
457db8f
 
 
 
 
 
 
de093f2
457db8f
6e8c55b
457db8f
 
 
 
5c99a8d
457db8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c99a8d
457db8f
 
 
 
 
 
 
 
 
 
5c99a8d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
import aiofiles
import asyncio
import base64
import fitz
import glob
import logging
import os
import pandas as pd
import pytz
import random
import re
import requests
import shutil
import streamlit as st
import time
import torch
import zipfile

from dataclasses import dataclass
from datetime import datetime
from diffusers import StableDiffusionPipeline
from io import BytesIO
from openai import OpenAI
from PIL import Image
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel
from typing import Optional

# OpenAI client initialization
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))

# Logging setup
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
log_records = []
class LogCaptureHandler(logging.Handler):
    def emit(self, record):
        log_records.append(record)
logger.addHandler(LogCaptureHandler())

# Streamlit configuration
st.set_page_config(
    page_title="AI Vision & SFT Titans 🚀",
    page_icon="🤖",
    layout="wide",
    initial_sidebar_state="expanded",
    menu_items={
        'Get Help': 'https://huggingface.co/awacke1',
        'Report a Bug': 'https://huggingface.co/spaces/awacke1',
        'About': "AI Vision & SFT Titans: PDFs, OCR, Image Gen, Line Drawings, Custom Diffusion, and SFT on CPU! 🌌"
    }
)

# Session state initialization
st.session_state.setdefault('history', [])
st.session_state.setdefault('builder', None)
st.session_state.setdefault('model_loaded', False)
st.session_state.setdefault('processing', {})
st.session_state.setdefault('asset_checkboxes', {})
st.session_state.setdefault('downloaded_pdfs', {})
st.session_state.setdefault('unique_counter', 0)
st.session_state.setdefault('selected_model_type', "Causal LM")
st.session_state.setdefault('selected_model', "None")
st.session_state.setdefault('cam0_file', None)
st.session_state.setdefault('cam1_file', None)
if 'asset_gallery_container' not in st.session_state:
    st.session_state['asset_gallery_container'] = st.sidebar.empty()

@dataclass
class ModelConfig:
    name: str
    base_model: str
    size: str
    domain: Optional[str] = None
    model_type: str = "causal_lm"
    @property
    def model_path(self): 
        return f"models/{self.name}"

@dataclass
class DiffusionConfig:
    name: str
    base_model: str
    size: str
    domain: Optional[str] = None
    @property
    def model_path(self):
        return f"diffusion_models/{self.name}"

class ModelBuilder:
    def __init__(self):
        self.config = None
        self.model = None
        self.tokenizer = None
        self.jokes = [
            "Why did the AI go to therapy? Too many layers to unpack! 😂",
            "Training complete! Time for a binary coffee break. ☕",
            "I told my neural network a joke; it couldn't stop dropping bits! 🤖",
            "I asked the AI for a pun, and it said, 'I'm punning on parallel processing!' 😄",
            "Debugging my code is like a stand-up routine—always a series of exceptions! 😆"
        ]
    def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
        with st.spinner(f"Loading {model_path}... ⏳"):
            self.model = AutoModelForCausalLM.from_pretrained(model_path)
            self.tokenizer = AutoTokenizer.from_pretrained(model_path)
            if self.tokenizer.pad_token is None:
                self.tokenizer.pad_token = self.tokenizer.eos_token
            if config:
                self.config = config
            self.model.to("cuda" if torch.cuda.is_available() else "cpu")
        st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}")
        return self
    def save_model(self, path: str):
        with st.spinner("Saving model... 💾"):
            os.makedirs(os.path.dirname(path), exist_ok=True)
            self.model.save_pretrained(path)
            self.tokenizer.save_pretrained(path)
        st.success(f"Model saved at {path}! ✅")

class DiffusionBuilder:
    def __init__(self):
        self.config = None
        self.pipeline = None
    def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None):
        with st.spinner(f"Loading diffusion model {model_path}... ⏳"):
            self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cpu")
            if config:
                self.config = config
        st.success("Diffusion model loaded! 🎨")
        return self
    def save_model(self, path: str):
        with st.spinner("Saving diffusion model... 💾"):
            os.makedirs(os.path.dirname(path), exist_ok=True)
            self.pipeline.save_pretrained(path)
        st.success(f"Diffusion model saved at {path}! ✅")
    def generate(self, prompt: str):
        return self.pipeline(prompt, num_inference_steps=20).images[0]

def generate_filename(sequence, ext="png"):
    return f"{sequence}_{time.strftime('%d%m%Y%H%M%S')}.{ext}"

def pdf_url_to_filename(url):
    return re.sub(r'[<>:"/\\|?*]', '_', url) + ".pdf"

def get_download_link(file_path, mime_type="application/pdf", label="Download"):
    return f'<a href="data:{mime_type};base64,{base64.b64encode(open(file_path, "rb").read()).decode()}" download="{os.path.basename(file_path)}">{label}</a>'

def zip_directory(directory_path, zip_path):
    with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
        [zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path)))
         for root, _, files in os.walk(directory_path) for file in files]

def get_model_files(model_type="causal_lm"):
    return [d for d in glob.glob("models/*" if model_type == "causal_lm" else "diffusion_models/*") if os.path.isdir(d)] or ["None"]

def get_gallery_files(file_types=["png", "pdf"]):
    return sorted(list({f for ext in file_types for f in glob.glob(f"*.{ext}")}))

def get_pdf_files():
    return sorted(glob.glob("*.pdf"))

def download_pdf(url, output_path):
    try:
        response = requests.get(url, stream=True, timeout=10)
        if response.status_code == 200:
            with open(output_path, "wb") as f:
                for chunk in response.iter_content(chunk_size=8192):
                    f.write(chunk)
            ret = True
        else:
            ret = False
    except requests.RequestException as e:
        logger.error(f"Failed to download {url}: {e}")
        ret = False
    return ret

async def process_pdf_snapshot(pdf_path, mode="single"):
    start_time = time.time()
    status = st.empty()
    status.text(f"Processing PDF Snapshot ({mode})... (0s)")
    try:
        doc = fitz.open(pdf_path)
        output_files = []
        if mode == "single":
            page = doc[0]
            pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
            output_file = generate_filename("single", "png")
            pix.save(output_file)
            output_files.append(output_file)
        elif mode == "twopage":
            for i in range(min(2, len(doc))):
                page = doc[i]
                pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
                output_file = generate_filename(f"twopage_{i}", "png")
                pix.save(output_file)
                output_files.append(output_file)
        elif mode == "allpages":
            for i in range(len(doc)):
                page = doc[i]
                pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
                output_file = generate_filename(f"page_{i}", "png")
                pix.save(output_file)
                output_files.append(output_file)
        doc.close()
        elapsed = int(time.time() - start_time)
        status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!")
        return output_files
    except Exception as e:
        status.error(f"Failed to process PDF: {str(e)}")
        return []

async def process_gpt4o_ocr(image, output_file):
    start_time = time.time()
    status = st.empty()
    status.text("Processing GPT-4o OCR... (0s)")
    buffered = BytesIO()
    image.save(buffered, format="PNG")
    img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
    messages = [{
        "role": "user",
        "content": [
            {"type": "text", "text": "Extract the electronic text from this image."},
            {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{img_str}", "detail": "auto"}}
        ]
    }]
    try:
        response = client.chat.completions.create(model="gpt-4o", messages=messages, max_tokens=300)
        result = response.choices[0].message.content
        elapsed = int(time.time() - start_time)
        status.text(f"GPT-4o OCR completed in {elapsed}s!")
        async with aiofiles.open(output_file, "w") as f:
            await f.write(result)
        return result
    except Exception as e:
        status.error(f"Failed to process image with GPT-4o: {str(e)}")
        return ""

async def process_image_gen(prompt, output_file):
    start_time = time.time()
    status = st.empty()
    status.text("Processing Image Gen... (0s)")
    pipeline = (st.session_state['builder'].pipeline 
                if st.session_state.get('builder') and isinstance(st.session_state['builder'], DiffusionBuilder) 
                and st.session_state['builder'].pipeline 
                else StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu"))
    gen_image = pipeline(prompt, num_inference_steps=20).images[0]
    elapsed = int(time.time() - start_time)
    status.text(f"Image Gen completed in {elapsed}s!")
    gen_image.save(output_file)
    return gen_image

def process_image_with_prompt(image, prompt, model="gpt-4o-mini", detail="auto"):
    buffered = BytesIO()
    image.save(buffered, format="PNG")
    img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
    messages = [{
        "role": "user",
        "content": [
            {"type": "text", "text": prompt},
            {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{img_str}", "detail": detail}}
        ]
    }]
    try:
        response = client.chat.completions.create(model=model, messages=messages, max_tokens=300)
        return response.choices[0].message.content
    except Exception as e:
        return f"Error processing image with GPT: {str(e)}"

def process_text_with_prompt(text, prompt, model="gpt-4o-mini"):
    messages = [{"role": "user", "content": f"{prompt}\n\n{text}"}]
    try:
        response = client.chat.completions.create(model=model, messages=messages, max_tokens=300)
        return response.choices[0].message.content
    except Exception as e:
        return f"Error processing text with GPT: {str(e)}"

# Sidebar: Gallery Settings
st.sidebar.subheader("Gallery Settings")
st.session_state.setdefault('gallery_size', 2)
st.session_state['gallery_size'] = st.sidebar.slider("Gallery Size", 1, 10, st.session_state['gallery_size'], key="gallery_size_slider")

# Tabs setup
tabs = st.tabs([
    "Camera Snap 📷", "Download PDFs 📥", "Test OCR 🔍", "Build Titan 🌱", 
    "Test Image Gen 🎨", "PDF Process 📄", "Image Process 🖼️", "MD Gallery 📚"
])
(tab_camera, tab_download, tab_ocr, tab_build, tab_imggen, tab_pdf_process, tab_image_process, tab_md_gallery) = tabs

with tab_camera:
    st.header("Camera Snap 📷")
    st.subheader("Single Capture")
    cols = st.columns(2)
    with cols[0]:
        cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0")
        if cam0_img:
            filename = generate_filename("cam0")
            if st.session_state['cam0_file'] and os.path.exists(st.session_state['cam0_file']):
                os.remove(st.session_state['cam0_file'])
            with open(filename, "wb") as f:
                f.write(cam0_img.getvalue())
            st.session_state['cam0_file'] = filename
            entry = f"Snapshot from Cam 0: {filename}"
            st.session_state['history'].append(entry)
            st.image(Image.open(filename), caption="Camera 0", use_container_width=True)
            logger.info(f"Saved snapshot from Camera 0: {filename}")
    with cols[1]:
        cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1")
        if cam1_img:
            filename = generate_filename("cam1")
            if st.session_state['cam1_file'] and os.path.exists(st.session_state['cam1_file']):
                os.remove(st.session_state['cam1_file'])
            with open(filename, "wb") as f:
                f.write(cam1_img.getvalue())
            st.session_state['cam1_file'] = filename
            entry = f"Snapshot from Cam 1: {filename}"
            st.session_state['history'].append(entry)
            st.image(Image.open(filename), caption="Camera 1", use_container_width=True)
            logger.info(f"Saved snapshot from Camera 1: {filename}")

with tab_download:
    st.header("Download PDFs 📥")
    if st.button("Examples 📚"):
        example_urls = [
            "https://arxiv.org/pdf/2308.03892",
            "https://arxiv.org/pdf/1912.01703",
            "https://arxiv.org/pdf/2408.11039",
            "https://arxiv.org/pdf/2109.10282",
            "https://arxiv.org/pdf/2112.10752",
            "https://arxiv.org/pdf/2308.11236",
            "https://arxiv.org/pdf/1706.03762",
            "https://arxiv.org/pdf/2006.11239",
            "https://arxiv.org/pdf/2305.11207",
            "https://arxiv.org/pdf/2106.09685",
            "https://arxiv.org/pdf/2005.11401",
            "https://arxiv.org/pdf/2106.10504"
        ]
        st.session_state['pdf_urls'] = "\n".join(example_urls)
    url_input = st.text_area("Enter PDF URLs (one per line)", value=st.session_state.get('pdf_urls', ""), height=200)
    if st.button("Robo-Download 🤖"):
        urls = url_input.strip().split("\n")
        progress_bar = st.progress(0)
        status_text = st.empty()
        total_urls = len(urls)
        existing_pdfs = get_pdf_files()
        for idx, url in enumerate(urls):
            if url:
                output_path = pdf_url_to_filename(url)
                status_text.text(f"Fetching {idx + 1}/{total_urls}: {os.path.basename(output_path)}...")
                if output_path not in existing_pdfs:
                    if download_pdf(url, output_path):
                        st.session_state['downloaded_pdfs'][url] = output_path
                        logger.info(f"Downloaded PDF from {url} to {output_path}")
                        entry = f"Downloaded PDF: {output_path}"
                        st.session_state['history'].append(entry)
                        st.session_state['asset_checkboxes'][output_path] = True
                    else:
                        st.error(f"Failed to nab {url} 😿")
                else:
                    st.info(f"Already got {os.path.basename(output_path)}! Skipping... 🐾")
                    st.session_state['downloaded_pdfs'][url] = output_path
                progress_bar.progress((idx + 1) / total_urls)
        status_text.text("Robo-Download complete! 🚀")
    mode = st.selectbox("Snapshot Mode", ["Single Page (High-Res)", "Two Pages (High-Res)", "All Pages (High-Res)"], key="download_mode")
    if st.button("Snapshot Selected 📸"):
        selected_pdfs = [path for path in get_gallery_files() if path.endswith('.pdf') and st.session_state['asset_checkboxes'].get(path, False)]
        if selected_pdfs:
            for pdf_path in selected_pdfs:
                if not os.path.exists(pdf_path):
                    st.warning(f"File not found: {pdf_path}. Skipping.")
                    continue
                mode_key = {"Single Page (High-Res)": "single",
                            "Two Pages (High-Res)": "twopage",
                            "All Pages (High-Res)": "allpages"}[mode]
                snapshots = asyncio.run(process_pdf_snapshot(pdf_path, mode_key))
                for snapshot in snapshots:
                    st.image(Image.open(snapshot), caption=snapshot, use_container_width=True)
                    st.session_state['asset_checkboxes'][snapshot] = True
        else:
            st.warning("No PDFs selected for snapshotting! Check some boxes in the sidebar.")

with tab_ocr:
    st.header("Test OCR 🔍")
    all_files = get_gallery_files()
    if all_files:
        if st.button("OCR All Assets 🚀"):
            full_text = "# OCR Results (GPT-4o)\n\n"
            for file in all_files:
                if file.endswith('.png'):
                    image = Image.open(file)
                else:
                    doc = fitz.open(file)
                    pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
                    image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
                    doc.close()
                output_file = generate_filename(f"ocr_{os.path.basename(file)}", "txt")
                result = asyncio.run(process_gpt4o_ocr(image, output_file))
                full_text += f"## {os.path.basename(file)}\n\n{result}\n\n"
                entry = f"OCR Test: {file} -> {output_file}"
                st.session_state['history'].append(entry)
            md_output_file = f"full_ocr_{int(time.time())}.md"
            with open(md_output_file, "w") as f:
                f.write(full_text)
            st.success(f"Full OCR saved to {md_output_file}")
            st.markdown(get_download_link(md_output_file, "text/markdown", "Download Full OCR Markdown"), unsafe_allow_html=True)
        selected_file = st.selectbox("Select Image or PDF", all_files, key="ocr_select")
        if selected_file:
            if selected_file.endswith('.png'):
                image = Image.open(selected_file)
            else:
                doc = fitz.open(selected_file)
                pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
                image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
                doc.close()
            st.image(image, caption="Input Image", use_container_width=True)
            if st.button("Run OCR 🚀", key="ocr_run"):
                output_file = generate_filename("ocr_output", "txt")
                st.session_state['processing']['ocr'] = True
                result = asyncio.run(process_gpt4o_ocr(image, output_file))
                entry = f"OCR Test: {selected_file} -> {output_file}"
                st.session_state['history'].append(entry)
                st.text_area("OCR Result", result, height=200, key="ocr_result")
                st.success(f"OCR output saved to {output_file}")
                st.session_state['processing']['ocr'] = False
            if selected_file.endswith('.pdf') and st.button("OCR All Pages 🚀", key="ocr_all_pages"):
                doc = fitz.open(selected_file)
                full_text = f"# OCR Results for {os.path.basename(selected_file)}\n\n"
                for i in range(len(doc)):
                    pix = doc[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
                    image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
                    output_file = generate_filename(f"ocr_page_{i}", "txt")
                    result = asyncio.run(process_gpt4o_ocr(image, output_file))
                    full_text += f"## Page {i + 1}\n\n{result}\n\n"
                    entry = f"OCR Test: {selected_file} Page {i + 1} -> {output_file}"
                    st.session_state['history'].append(entry)
                md_output_file = f"full_ocr_{os.path.basename(selected_file)}_{int(time.time())}.md"
                with open(md_output_file, "w") as f:
                    f.write(full_text)
                st.success(f"Full OCR saved to {md_output_file}")
                st.markdown(get_download_link(md_output_file, "text/markdown", "Download Full OCR Markdown"), unsafe_allow_html=True)
    else:
        st.warning("No assets in gallery yet. Use Camera Snap or Download PDFs!")

with tab_build:
    st.header("Build Titan 🌱")
    model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type")
    base_model = st.selectbox(
        "Select Tiny Model",
        ["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type == "Causal LM"
        else ["OFA-Sys/small-stable-diffusion-v0", "stabilityai/stable-diffusion-2-base"]
    )
    model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}")
    domain = st.text_input("Target Domain", "general")
    if st.button("Download Model ⬇️"):
        config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(
            name=model_name, base_model=base_model, size="small", domain=domain
        )
        builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
        builder.load_model(base_model, config)
        builder.save_model(config.model_path)
        st.session_state['builder'] = builder
        st.session_state['model_loaded'] = True
        st.session_state['selected_model_type'] = model_type
        st.session_state['selected_model'] = config.model_path
        entry = f"Built {model_type} model: {model_name}"
        st.session_state['history'].append(entry)
        st.success(f"Model downloaded and saved to {config.model_path}! 🎉")
        st.rerun()

with tab_imggen:
    st.header("Test Image Gen 🎨")
    all_files = get_gallery_files()
    if all_files:
        selected_file = st.selectbox("Select Image or PDF", all_files, key="gen_select")
        if selected_file:
            if selected_file.endswith('.png'):
                image = Image.open(selected_file)
            else:
                doc = fitz.open(selected_file)
                pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
                image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
                doc.close()
            st.image(image, caption="Reference Image", use_container_width=True)
            prompt = st.text_area("Prompt", "Generate a neon superhero version of this image", key="gen_prompt")
            if st.button("Run Image Gen 🚀", key="gen_run"):
                output_file = generate_filename("gen_output", "png")
                st.session_state['processing']['gen'] = True
                result = asyncio.run(process_image_gen(prompt, output_file))
                entry = f"Image Gen Test: {prompt} -> {output_file}"
                st.session_state['history'].append(entry)
                st.image(result, caption="Generated Image", use_container_width=True)
                st.success(f"Image saved to {output_file}")
                st.session_state['processing']['gen'] = False
    else:
        st.warning("No images or PDFs in gallery yet. Use Camera Snap or Download PDFs!")

with tab_pdf_process:
    st.header("PDF Process")
    st.subheader("Upload PDFs for GPT-based text extraction")
    gpt_models = ["gpt-4o", "gpt-4o-mini"]
    selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="pdf_gpt_model")
    detail_level = st.selectbox("Detail Level", ["auto", "low", "high"], key="pdf_detail_level")
    uploaded_pdfs = st.file_uploader("Upload PDF files", type=["pdf"], accept_multiple_files=True, key="pdf_process_uploader")
    view_mode = st.selectbox("View Mode", ["Single Page", "Double Page"], key="pdf_view_mode")
    if st.button("Process Uploaded PDFs", key="process_pdfs"):
        combined_text = ""
        for pdf_file in uploaded_pdfs:
            pdf_bytes = pdf_file.read()
            temp_pdf_path = f"temp_{pdf_file.name}"
            with open(temp_pdf_path, "wb") as f:
                f.write(pdf_bytes)
            try:
                doc = fitz.open(temp_pdf_path)
                st.write(f"Processing {pdf_file.name} with {len(doc)} pages")
                if view_mode == "Single Page":
                    for i, page in enumerate(doc):
                        pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
                        img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
                        st.image(img, caption=f"{pdf_file.name} Page {i+1}")
                        gpt_text = process_image_with_prompt(img, "Extract the electronic text from image", model=selected_gpt_model, detail=detail_level)
                        combined_text += f"\n## {pdf_file.name} - Page {i+1}\n\n{gpt_text}\n"
                else:
                    pages = list(doc)
                    for i in range(0, len(pages), 2):
                        if i+1 < len(pages):
                            pix1 = pages[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
                            img1 = Image.frombytes("RGB", [pix1.width, pix1.height], pix1.samples)
                            pix2 = pages[i+1].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
                            img2 = Image.frombytes("RGB", [pix2.width, pix2.height], pix2.samples)
                            total_width = img1.width + img2.width
                            max_height = max(img1.height, img2.height)
                            combined_img = Image.new("RGB", (total_width, max_height))
                            combined_img.paste(img1, (0, 0))
                            combined_img.paste(img2, (img1.width, 0))
                            st.image(combined_img, caption=f"{pdf_file.name} Pages {i+1}-{i+2}")
                            gpt_text = process_image_with_prompt(combined_img, "Extract the electronic text from image", model=selected_gpt_model, detail=detail_level)
                            combined_text += f"\n## {pdf_file.name} - Pages {i+1}-{i+2}\n\n{gpt_text}\n"
                        else:
                            pix = pages[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
                            img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
                            st.image(img, caption=f"{pdf_file.name} Page {i+1}")
                            gpt_text = process_image_with_prompt(img, "Extract the electronic text from image", model=selected_gpt_model, detail=detail_level)
                            combined_text += f"\n## {pdf_file.name} - Page {i+1}\n\n{gpt_text}\n"
                doc.close()
            except Exception as e:
                st.error(f"Error processing {pdf_file.name}: {str(e)}")
            finally:
                os.remove(temp_pdf_path)
        output_filename = generate_filename("processed_pdf", "md")
        with open(output_filename, "w", encoding="utf-8") as f:
            f.write(combined_text)
        st.success(f"PDF processing complete. MD file saved as {output_filename}")
        st.markdown(get_download_link(output_filename, "text/markdown", "Download Processed PDF MD"), unsafe_allow_html=True)

with tab_image_process:
    st.header("Image Process")
    st.subheader("Upload Images for GPT-based OCR")
    gpt_models = ["gpt-4o", "gpt-4o-mini"]
    selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="img_gpt_model")
    detail_level = st.selectbox("Detail Level", ["auto", "low", "high"], key="img_detail_level")
    prompt_img = st.text_input("Enter prompt for image processing", "Extract the electronic text from image", key="img_process_prompt")
    uploaded_images = st.file_uploader("Upload image files", type=["png", "jpg", "jpeg"], accept_multiple_files=True, key="image_process_uploader")
    if st.button("Process Uploaded Images", key="process_images"):
        combined_text = ""
        for img_file in uploaded_images:
            try:
                img = Image.open(img_file)
                st.image(img, caption=img_file.name)
                gpt_text = process_image_with_prompt(img, prompt_img, model=selected_gpt_model, detail=detail_level)
                combined_text += f"\n## {img_file.name}\n\n{gpt_text}\n"
            except Exception as e:
                st.error(f"Error processing image {img_file.name}: {str(e)}")
        output_filename = generate_filename("processed_image", "md")
        with open(output_filename, "w", encoding="utf-8") as f:
            f.write(combined_text)
        st.success(f"Image processing complete. MD file saved as {output_filename}")
        st.markdown(get_download_link(output_filename, "text/markdown", "Download Processed Image MD"), unsafe_allow_html=True)

with tab_md_gallery:
    st.header("MD Gallery and GPT Processing")
    gpt_models = ["gpt-4o", "gpt-4o-mini"]
    selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="md_gpt_model")
    md_files = sorted(glob.glob("*.md"))
    if md_files:
        st.subheader("Individual File Processing")
        cols = st.columns(2)
        for idx, md_file in enumerate(md_files):
            with cols[idx % 2]:
                st.write(md_file)
                if st.button(f"Process {md_file}", key=f"process_md_{md_file}"):
                    try:
                        with open(md_file, "r", encoding="utf-8") as f:
                            content = f.read()
                        prompt_md = "Summarize this into markdown outline with emojis and number the topics 1..12"
                        result_text = process_text_with_prompt(content, prompt_md, model=selected_gpt_model)
                        st.markdown(result_text)
                        output_filename = generate_filename(f"processed_{os.path.splitext(md_file)[0]}", "md")
                        with open(output_filename, "w", encoding="utf-8") as f:
                            f.write(result_text)
                        st.markdown(get_download_link(output_filename, "text/markdown", f"Download {output_filename}"), unsafe_allow_html=True)
                    except Exception as e:
                        st.error(f"Error processing {md_file}: {str(e)}")
        st.subheader("Batch Processing")
        st.write("Select MD files to combine and process:")
        selected_md = {}
        for md_file in md_files:
            selected_md[md_file] = st.checkbox(md_file, key=f"checkbox_md_{md_file}")
        batch_prompt = st.text_input("Enter batch processing prompt", "Summarize this into markdown outline with emojis and number the topics 1..12", key="batch_prompt")
        if st.button("Process Selected MD Files", key="process_batch_md"):
            combined_content = ""
            for md_file, selected in selected_md.items():
                if selected:
                    try:
                        with open(md_file, "r", encoding="utf-8") as f:
                            combined_content += f"\n## {md_file}\n" + f.read() + "\n"
                    except Exception as e:
                        st.error(f"Error reading {md_file}: {str(e)}")
            if combined_content:
                result_text = process_text_with_prompt(combined_content, batch_prompt, model=selected_gpt_model)
                st.markdown(result_text)
                output_filename = generate_filename("batch_processed_md", "md")
                with open(output_filename, "w", encoding="utf-8") as f:
                    f.write(result_text)
                st.success(f"Batch processing complete. MD file saved as {output_filename}")
                st.markdown(get_download_link(output_filename, "text/markdown", "Download Batch Processed MD"), unsafe_allow_html=True)
            else:
                st.warning("No MD files selected.")
    else:
        st.warning("No MD files found.")

def update_gallery():
    container = st.session_state['asset_gallery_container']
    container.empty()
    all_files = get_gallery_files()
    if all_files:
        container.markdown("### Asset Gallery 📸📖")
        cols = container.columns(2)
        for idx, file in enumerate(all_files[:st.session_state['gallery_size']]):
            with cols[idx % 2]:
                st.session_state['unique_counter'] += 1
                unique_id = st.session_state['unique_counter']
                if file.endswith('.png'):
                    st.image(Image.open(file), caption=os.path.basename(file), use_container_width=True)
                else:
                    doc = fitz.open(file)
                    pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5))
                    img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
                    st.image(img, caption=os.path.basename(file), use_container_width=True)
                    doc.close()
                checkbox_key = f"asset_{file}_{unique_id}"
                st.session_state['asset_checkboxes'][file] = st.checkbox("Use for SFT/Input", value=st.session_state['asset_checkboxes'].get(file, False), key=checkbox_key)
                mime_type = "image/png" if file.endswith('.png') else "application/pdf"
                st.markdown(get_download_link(file, mime_type, "Snag It! 📥"), unsafe_allow_html=True)
                if st.button("Zap It! 🗑️", key=f"delete_{file}_{unique_id}"):
                    os.remove(file)
                    st.session_state['asset_checkboxes'].pop(file, None)
                    st.success(f"Asset {os.path.basename(file)} vaporized! 💨")
                    st.rerun()

update_gallery()

st.sidebar.subheader("Action Logs 📜")
for record in log_records:
    st.sidebar.write(f"{record.asctime} - {record.levelname} - {record.message}")

st.sidebar.subheader("History 📜")
for entry in st.session_state.get("history", []):
    if entry is not None:
        st.sidebar.write(entry)