awacke1's picture
Update app.py
adeee4c verified
raw
history blame
22.2 kB
#!/usr/bin/env python3
import os
import base64
import streamlit as st
import csv
import time
from dataclasses import dataclass
import zipfile
import logging
from streamlit.components.v1 import html
from PIL import Image
# Logging setup
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
log_records = []
class LogCaptureHandler(logging.Handler):
def emit(self, record):
log_records.append(record)
logger.addHandler(LogCaptureHandler())
st.set_page_config(page_title="SFT Tiny Titans 🚀", page_icon="🤖", layout="wide", initial_sidebar_state="expanded")
# Model Configurations
@dataclass
class ModelConfig:
name: str
base_model: str
model_type: str = "causal_lm"
@property
def model_path(self):
return f"models/{self.name}"
@dataclass
class DiffusionConfig:
name: str
base_model: str
@property
def model_path(self):
return f"diffusion_models/{self.name}"
# Lazy-loaded Builders
class ModelBuilder:
def __init__(self):
self.config = None
self.model = None
self.tokenizer = None
def load_model(self, model_path: str, config: ModelConfig):
try:
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
logger.info(f"Loading NLP model: {model_path}")
self.model = AutoModelForCausalLM.from_pretrained(model_path)
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.config = config
self.model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
logger.info("NLP model loaded successfully")
except Exception as e:
logger.error(f"Error loading NLP model: {str(e)}")
raise
def fine_tune(self, csv_path):
try:
from torch.utils.data import Dataset, DataLoader
import torch
logger.info(f"Starting NLP fine-tuning with {csv_path}")
class SFTDataset(Dataset):
def __init__(self, data, tokenizer):
self.data = data
self.tokenizer = tokenizer
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
prompt = self.data[idx]["prompt"]
response = self.data[idx]["response"]
inputs = self.tokenizer(f"{prompt} {response}", return_tensors="pt", padding="max_length", max_length=128, truncation=True)
labels = inputs["input_ids"].clone()
labels[0, :len(self.tokenizer(prompt)["input_ids"][0])] = -100
return {"input_ids": inputs["input_ids"][0], "attention_mask": inputs["attention_mask"][0], "labels": labels[0]}
data = []
with open(csv_path, "r") as f:
reader = csv.DictReader(f)
for row in reader:
data.append({"prompt": row["prompt"], "response": row["response"]})
dataset = SFTDataset(data, self.tokenizer)
dataloader = DataLoader(dataset, batch_size=2)
optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5)
self.model.train()
for _ in range(1):
for batch in dataloader:
optimizer.zero_grad()
outputs = self.model(**{k: v.to(self.model.device) for k, v in batch.items()})
outputs.loss.backward()
optimizer.step()
logger.info("NLP fine-tuning completed")
except Exception as e:
logger.error(f"Error in NLP fine-tuning: {str(e)}")
raise
def evaluate(self, prompt: str):
try:
import torch
logger.info(f"Evaluating NLP with prompt: {prompt}")
self.model.eval()
with torch.no_grad():
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device)
outputs = self.model.generate(**inputs, max_new_tokens=50)
result = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
logger.info(f"NLP evaluation result: {result}")
return result
except Exception as e:
logger.error(f"Error in NLP evaluation: {str(e)}")
raise
class DiffusionBuilder:
def __init__(self):
self.config = None
self.pipeline = None
def load_model(self, model_path: str, config: DiffusionConfig):
try:
from diffusers import StableDiffusionPipeline
import torch
logger.info(f"Loading diffusion model: {model_path}")
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path)
self.pipeline.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
self.config = config
logger.info("Diffusion model loaded successfully")
except Exception as e:
logger.error(f"Error loading diffusion model: {str(e)}")
raise
def fine_tune(self, images, texts):
try:
import torch
import numpy as np
logger.info("Starting diffusion fine-tuning")
optimizer = torch.optim.AdamW(self.pipeline.unet.parameters(), lr=1e-5)
self.pipeline.unet.train()
for _ in range(1):
for img, text in zip(images, texts):
optimizer.zero_grad()
img_tensor = torch.tensor(np.array(img)).permute(2, 0, 1).unsqueeze(0).float().to(self.pipeline.device) / 255.0
latents = self.pipeline.vae.encode(img_tensor).latent_dist.sample()
noise = torch.randn_like(latents)
timesteps = torch.randint(0, self.pipeline.scheduler.num_train_timesteps, (1,), device=latents.device)
noisy_latents = self.pipeline.scheduler.add_noise(latents, noise, timesteps)
text_emb = self.pipeline.text_encoder(self.pipeline.tokenizer(text, return_tensors="pt").input_ids.to(self.pipeline.device))[0]
pred_noise = self.pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_emb).sample
loss = torch.nn.functional.mse_loss(pred_noise, noise)
loss.backward()
optimizer.step()
logger.info("Diffusion fine-tuning completed")
except Exception as e:
logger.error(f"Error in diffusion fine-tuning: {str(e)}")
raise
def generate(self, prompt: str):
try:
logger.info(f"Generating image with prompt: {prompt}")
img = self.pipeline(prompt, num_inference_steps=20).images[0]
logger.info("Image generated successfully")
return img
except Exception as e:
logger.error(f"Error in image generation: {str(e)}")
raise
# Utilities
def get_download_link(file_path, mime_type="text/plain", label="Download"):
with open(file_path, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} 📥</a>'
def generate_filename(sequence, ext="png"):
from datetime import datetime
import pytz
central = pytz.timezone('US/Central')
timestamp = datetime.now(central).strftime("%d%m%Y%H%M%S%p")
return f"{sequence}{timestamp}.{ext}"
def get_gallery_files(file_types):
import glob
return sorted([f for ext in file_types for f in glob.glob(f"*.{ext}")])
def zip_files(files, zip_name):
with zipfile.ZipFile(zip_name, 'w', zipfile.ZIP_DEFLATED) as zipf:
for file in files:
zipf.write(file, os.path.basename(file))
return zip_name
# JavaScript/HTML Components
camera_selector_html = """
<div>
<h3>Camera & Audio Source Selector</h3>
<select id="videoSource"></select>
<select id="audioSource"></select>
<button onclick="startStream()">Start Stream</button>
<video id="video" autoplay playsinline style="width: 100%;"></video>
</div>
<script>
const videoSource = document.getElementById('videoSource');
const audioSource = document.getElementById('audioSource');
const video = document.getElementById('video');
let stream;
navigator.mediaDevices.enumerateDevices().then(devices => {
devices.forEach(device => {
const option = document.createElement('option');
option.value = device.deviceId;
option.text = device.label || `${device.kind} ${device.deviceId}`;
if (device.kind === 'videoinput') {
videoSource.appendChild(option);
} else if (device.kind === 'audioinput') {
audioSource.appendChild(option);
}
});
}).catch(err => console.error('Error enumerating devices:', err));
function startStream() {
if (stream) {
stream.getTracks().forEach(track => track.stop());
}
const constraints = {
video: { deviceId: videoSource.value ? { exact: videoSource.value } : undefined },
audio: { deviceId: audioSource.value ? { exact: audioSource.value } : undefined }
};
navigator.mediaDevices.getUserMedia(constraints)
.then(mediaStream => {
stream = mediaStream;
video.srcObject = stream;
console.log('Stream started');
})
.catch(err => console.error('Error starting stream:', err));
}
</script>
"""
image_capture_html = """
<div>
<h3>Image Capture - Camera {id}</h3>
<video id="video{id}" autoplay playsinline style="width: 100%;"></video>
<button onclick="captureFrame{id}()">Capture Frame 📸</button>
<canvas id="canvas{id}" style="display: none;"></canvas>
</div>
<script>
const video{id} = document.getElementById('video{id}');
const canvas{id} = document.getElementById('canvas{id}');
let stream{id};
navigator.mediaDevices.getUserMedia({ video: true })
.then(mediaStream => {
stream{id} = mediaStream;
video{id}.srcObject = stream{id};
console.log('Camera {id} stream started');
})
.catch(err => console.error('Error starting Camera {id}:', err));
function captureFrame{id}() {
canvas{id}.width = video{id}.videoWidth;
canvas{id}.height = video{id}.videoHeight;
const ctx = canvas{id}.getContext('2d');
ctx.drawImage(video{id}, 0, 0, canvas{id}.width, canvas{id}.height);
const dataUrl = canvas{id}.toDataURL('image/png');
const filename = `{id}${new Date().toISOString().replace(/[^0-9]/g, '')}.png`;
const link = document.createElement('a');
link.href = dataUrl;
link.download = filename;
link.click();
console.log('Captured frame:', filename);
}
</script>
"""
video_capture_html = """
<div>
<h3>Video Capture - Camera {id}</h3>
<video id="video{id}" autoplay playsinline style="width: 100%;"></video>
<button onclick="captureVideo{id}()">Capture Video 🎥</button>
<canvas id="canvas{id}" style="display: none;"></canvas>
</div>
<script>
const video{id} = document.getElementById('video{id}');
const canvas{id} = document.getElementById('canvas{id}');
let stream{id}, recorder{id};
navigator.mediaDevices.getUserMedia({ video: true, audio: true })
.then(mediaStream => {
stream{id} = mediaStream;
video{id}.srcObject = stream{id};
recorder{id} = new MediaRecorder(stream{id});
const chunks = [];
recorder{id}.ondataavailable = e => chunks.push(e.data);
recorder{id}.onstop = () => {
const blob = new Blob(chunks, { type: 'video/mp4' });
const filename = `{id}${new Date().toISOString().replace(/[^0-9]/g, '')}.mp4`;
const url = URL.createObjectURL(blob);
const link = document.createElement('a');
link.href = url;
link.download = filename;
link.click();
console.log('Captured video:', filename);
sliceVideo{id}(blob);
};
console.log('Camera {id} stream started');
})
.catch(err => console.error('Error starting Camera {id}:', err));
function captureVideo{id}() {
recorder{id}.start();
setTimeout(() => recorder{id}.stop(), 10000); // 10 seconds
console.log('Recording started for Camera {id}');
}
function sliceVideo{id}(blob) {
const video = document.createElement('video');
video.src = URL.createObjectURL(blob);
video.onloadedmetadata = () => {
const ctx = canvas{id}.getContext('2d');
canvas{id}.width = video.videoWidth;
canvas{id}.height = video.videoHeight;
let frameCount = 0;
const interval = video.duration / 10;
video.currentTime = 0;
const captureFrame = () => {
if (frameCount < 10) {
ctx.drawImage(video, 0, 0, canvas{id}.width, canvas{id}.height);
const dataUrl = canvas{id}.toDataURL('image/png');
const filename = `{id}${new Date().toISOString().replace(/[^0-9]/g, '')}_${frameCount}.png`;
const link = document.createElement('a');
link.href = dataUrl;
link.download = filename;
link.click();
console.log('Captured frame:', filename);
frameCount++;
video.currentTime += interval;
setTimeout(captureFrame, 100);
}
};
video.play().then(captureFrame);
};
}
</script>
"""
# Main App
st.title("SFT Tiny Titans 🚀 (Web Cam Action!)")
# Sidebar Galleries
st.sidebar.header("Captured Media 🎨")
gallery_container = st.sidebar.empty()
def update_gallery():
media_files = get_gallery_files(["png", "mp4"])
with gallery_container:
if media_files:
cols = st.columns(2)
for idx, file in enumerate(media_files[:4]):
with cols[idx % 2]:
if file.endswith(".png"):
st.image(Image.open(file), caption=file.split('/')[-1], use_container_width=True)
elif file.endswith(".mp4"):
st.video(file)
# Sidebar Model Management
st.sidebar.subheader("Model Hub 🗂️")
model_type = st.sidebar.selectbox("Model Type", ["NLP (Causal LM)", "CV (Diffusion)"])
model_options = {
"NLP (Causal LM)": "HuggingFaceTB/SmolLM-135M",
"CV (Diffusion)": ["CompVis/stable-diffusion-v1-4", "stabilityai/stable-diffusion-2-base", "runwayml/stable-diffusion-v1-5"]
}
selected_model = st.sidebar.selectbox("Select Model", ["None"] + ([model_options[model_type]] if "NLP" in model_type else model_options[model_type]))
if selected_model != "None" and st.sidebar.button("Load Model 📂"):
builder = ModelBuilder() if "NLP" in model_type else DiffusionBuilder()
config = (ModelConfig if "NLP" in model_type else DiffusionConfig)(name=f"titan_{int(time.time())}", base_model=selected_model)
with st.spinner("Loading... ⏳"):
try:
builder.load_model(selected_model, config)
st.session_state['builder'] = builder
st.session_state['model_loaded'] = True
st.success("Model loaded! 🎉")
except Exception as e:
st.error(f"Load failed: {str(e)}")
# Tabs
tab1, tab2, tab3, tab4 = st.tabs(["Build Titan 🌱", "Camera Snap 📷", "Fine-Tune Titans 🔧", "Test Titans 🧪"])
with tab1:
st.header("Build Titan 🌱 (Quick Start!)")
model_type = st.selectbox("Model Type", ["NLP (Causal LM)", "CV (Diffusion)"], key="build_type")
base_model = st.selectbox("Select Model", model_options[model_type], key="build_model")
if st.button("Download Model ⬇️"):
config = (ModelConfig if "NLP" in model_type else DiffusionConfig)(name=f"titan_{int(time.time())}", base_model=base_model)
builder = ModelBuilder() if "NLP" in model_type else DiffusionBuilder()
with st.spinner("Fetching... ⏳"):
try:
builder.load_model(base_model, config)
st.session_state['builder'] = builder
st.session_state['model_loaded'] = True
st.success("Titan up! 🎉")
except Exception as e:
st.error(f"Download failed: {str(e)}")
with tab2:
st.header("Camera Snap 📷 (Dual Live Feed!)")
st.subheader("Source Configuration")
html(camera_selector_html, height=400)
cols = st.columns(2)
for i in range(2):
with cols[i]:
html(image_capture_html.format(id=i), height=300)
html(video_capture_html.format(id=i), height=300)
st.subheader("Upload Captured Files")
uploaded_files = st.file_uploader("Upload PNGs/MP4s from Downloads", type=["png", "mp4"], accept_multiple_files=True)
if uploaded_files:
for file in uploaded_files:
filename = file.name
with open(filename, "wb") as f:
f.write(file.read())
logger.info(f"Saved uploaded file: {filename}")
if filename.endswith(".png"):
st.image(Image.open(filename), caption=filename, use_container_width=True)
elif filename.endswith(".mp4"):
st.video(filename)
update_gallery()
with tab3:
st.header("Fine-Tune Titans 🔧 (Tune Fast!)")
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
st.warning("Load a Titan first! ⚠️")
else:
if isinstance(st.session_state['builder'], ModelBuilder):
st.subheader("NLP Tune 🧠")
uploaded_csv = st.file_uploader("Upload CSV", type="csv", key="nlp_csv")
if uploaded_csv and st.button("Tune NLP 🔄"):
logger.info("Initiating NLP fine-tune")
try:
with open("temp.csv", "wb") as f:
f.write(uploaded_csv.read())
st.session_state['builder'].fine_tune("temp.csv")
st.success("NLP sharpened! 🎉")
except Exception as e:
st.error(f"NLP fine-tune failed: {str(e)}")
elif isinstance(st.session_state['builder'], DiffusionBuilder):
st.subheader("CV Tune 🎨")
captured_images = get_gallery_files(["png"])
if len(captured_images) >= 2:
texts = ["Superhero Neon", "Hero Glow", "Cape Spark"][:len(captured_images)]
if st.button("Tune CV 🔄"):
logger.info("Initiating CV fine-tune")
try:
images = [Image.open(img) for img in captured_images]
st.session_state['builder'].fine_tune(images, texts)
st.success("CV polished! 🎉")
except Exception as e:
st.error(f"CV fine-tune failed: {str(e)}")
else:
st.warning("Upload at least 2 PNGs in Camera Snap first! ⚠️")
with tab4:
st.header("Test Titans 🧪 (Image Agent Demo!)")
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
st.warning("Load a Titan first! ⚠️")
else:
if isinstance(st.session_state['builder'], ModelBuilder):
st.subheader("NLP Test 🧠")
prompt = st.text_area("Prompt", "What’s a superhero?", key="nlp_test")
if st.button("Test NLP ▶️"):
logger.info("Running NLP test")
try:
result = st.session_state['builder'].evaluate(prompt)
st.write(f"**Answer**: {result}")
except Exception as e:
st.error(f"NLP test failed: {str(e)}")
elif isinstance(st.session_state['builder'], DiffusionBuilder):
st.subheader("CV Test 🎨 (Image Set Demo)")
captured_images = get_gallery_files(["png"])
if len(captured_images) >= 2:
if st.button("Run CV Demo ▶️"):
logger.info("Running CV image set demo")
try:
images = [Image.open(img) for img in captured_images[:10]]
prompts = ["Neon " + os.path.basename(img).split('.')[0] for img in captured_images[:10]]
generated_images = []
for prompt in prompts:
img = st.session_state['builder'].generate(prompt)
generated_images.append(img)
cols = st.columns(2)
for idx, (orig, gen) in enumerate(zip(images, generated_images)):
with cols[idx % 2]:
st.image(orig, caption=f"Original: {captured_images[idx]}", use_container_width=True)
st.image(gen, caption=f"Generated: {prompts[idx]}", use_container_width=True)
md_content = "# Image Set Demo\n\nScript of filenames and descriptions:\n"
for i, (img, prompt) in enumerate(zip(captured_images[:10], prompts)):
md_content += f"{i+1}. `{img}` - {prompt}\n"
md_filename = f"demo_metadata_{int(time.time())}.md"
with open(md_filename, "w") as f:
f.write(md_content)
st.markdown(get_download_link(md_filename, "text/markdown", "Download Metadata .md"), unsafe_allow_html=True)
logger.info("CV demo completed with metadata")
except Exception as e:
st.error(f"CV demo failed: {str(e)}")
logger.error(f"Error in CV demo: {str(e)}")
else:
st.warning("Upload at least 2 PNGs in Camera Snap first! ⚠️")
# Display Logs
st.sidebar.subheader("Action Logs 📜")
log_container = st.sidebar.empty()
with log_container:
for record in log_records:
st.write(f"{record.asctime} - {record.levelname} - {record.message}")
update_gallery() # Initial gallery update