awacke1 commited on
Commit
1d38074
·
verified ·
1 Parent(s): 6b416b0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -3
app.py CHANGED
@@ -8,9 +8,16 @@ from dataclasses import dataclass
8
  import zipfile
9
  import logging
10
 
11
- # Logging setup
12
  logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
13
  logger = logging.getLogger(__name__)
 
 
 
 
 
 
 
14
 
15
  st.set_page_config(page_title="SFT Tiny Titans 🚀", page_icon="🤖", layout="wide", initial_sidebar_state="expanded")
16
 
@@ -132,7 +139,7 @@ class DiffusionBuilder:
132
  for _ in range(1):
133
  for img, text in zip(images, texts):
134
  optimizer.zero_grad()
135
- img_tensor = torch.tensor(np.array(img)).permute(2, 0, 1).unsqueeze(0).float().to(self.pipeline.device) / 255.0 # Normalize
136
  latents = self.pipeline.vae.encode(img_tensor).latent_dist.sample()
137
  noise = torch.randn_like(latents)
138
  timesteps = torch.randint(0, self.pipeline.scheduler.num_train_timesteps, (1,), device=latents.device)
@@ -368,5 +375,5 @@ with tab4:
368
  st.sidebar.subheader("Action Logs 📜")
369
  log_container = st.sidebar.empty()
370
  with log_container:
371
- for record in logger.handlers[0].buffer:
372
  st.write(f"{record.asctime} - {record.levelname} - {record.message}")
 
8
  import zipfile
9
  import logging
10
 
11
+ # Logging setup with custom log storage
12
  logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
13
  logger = logging.getLogger(__name__)
14
+ log_records = [] # Custom list to store logs
15
+
16
+ class LogCaptureHandler(logging.Handler):
17
+ def emit(self, record):
18
+ log_records.append(record)
19
+
20
+ logger.addHandler(LogCaptureHandler())
21
 
22
  st.set_page_config(page_title="SFT Tiny Titans 🚀", page_icon="🤖", layout="wide", initial_sidebar_state="expanded")
23
 
 
139
  for _ in range(1):
140
  for img, text in zip(images, texts):
141
  optimizer.zero_grad()
142
+ img_tensor = torch.tensor(np.array(img)).permute(2, 0, 1).unsqueeze(0).float().to(self.pipeline.device) / 255.0
143
  latents = self.pipeline.vae.encode(img_tensor).latent_dist.sample()
144
  noise = torch.randn_like(latents)
145
  timesteps = torch.randint(0, self.pipeline.scheduler.num_train_timesteps, (1,), device=latents.device)
 
375
  st.sidebar.subheader("Action Logs 📜")
376
  log_container = st.sidebar.empty()
377
  with log_container:
378
+ for record in log_records:
379
  st.write(f"{record.asctime} - {record.levelname} - {record.message}")