Spaces:
Running
Running
File size: 4,489 Bytes
380570c b4454fe 4ef921e 380570c b4454fe 380570c f73d0f9 b4454fe f73d0f9 380570c b4454fe f73d0f9 b4454fe f73d0f9 b4454fe f73d0f9 380570c f73d0f9 b4454fe f73d0f9 380570c f73d0f9 380570c 6eb4ed6 380570c f73d0f9 380570c f73d0f9 380570c 4ef921e 380570c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
import gradio as gr
import numpy as np
from PIL import Image
from utils import load_model, segment_person, resize_image, split_stereo_image,resize_image_to_width, resize_mask, resize_images
from testing import get_image_names
# Load model and processor once
processor, model = load_model()
# Default background (solid color)
default_bg = Image.new("RGB", (512, 512), color=(95, 147, 89))
def generate_3d_outputs(person_img, background_img=None, shift_pixels=10, person_size=100):
# Resize images to match
background_img = background_img if background_img is not None else default_bg
# Split background image into left and right halves
leftBackground, rightBackground = split_stereo_image(Image.fromarray(background_img))
## Match person image to background image width
image = resize_image_to_width(person_img, leftBackground)
# Step 1: Segment person
mask = segment_person(image, processor, model)
# Resize mask based on person_size percentage
mask = resize_mask(person_size, mask)
# Resize image based on person_size percentage
image_np = resize_images(image, person_size)
# Apply mask to image
person_only = image_np * mask
person_segmentation = np.clip(person_only, 0, 255).astype(np.uint8)
# Resize mask and person_only to match background dimensions while preserving content
target_height, target_width = leftBackground.shape[:2]
current_height, current_width = mask.shape[:2]
# Calculate padding
pad_top = max(0, (target_height - current_height) // 2)
pad_bottom = max(0, target_height - current_height - pad_top)
pad_left = max(0, (target_width - current_width) // 2)
pad_right = max(0, target_width - current_width - pad_left)
# Pad mask and person_only arrays
mask = np.pad(mask, ((pad_top, pad_bottom), (pad_left, pad_right), (0,0)), mode='constant')
person_only = np.pad(person_segmentation, ((pad_top, pad_bottom), (pad_left, pad_right), (0,0)), mode='constant')
# CROP MASK TO MATCH BACKGROUND DIMENSIONS FROM CENTER OF BACKGROUND
if(mask.shape[0] > target_height or mask.shape[1] > target_width):
mask = mask[mask.shape[0]//2-target_height//2:mask.shape[0]//2+target_height//2, mask.shape[1]//2-target_width//2:mask.shape[1]//2+target_width//2, :]
person_only = person_only[person_only.shape[0]//2-target_height//2:person_only.shape[0]//2+target_height//2, person_only.shape[1]//2-target_width//2:person_only.shape[1]//2+target_width//2, :]
# Convert background images to numpy arrays
leftBackground_np = np.array(leftBackground)
rightBackground_np = np.array(rightBackground)
# Apply mask to background images
leftBackground_only = leftBackground_np * (1 - mask)
rightBackground_only = rightBackground_np * (1 - mask)
# Step 2: Create stereo pair
person_left = np.roll(person_only, shift=-shift_pixels, axis=1)
person_right = np.roll(person_only, shift=shift_pixels, axis=1)
left_eye = np.clip(person_right + leftBackground_only, 0, 255).astype(np.uint8)
right_eye = np.clip(person_left + rightBackground_only, 0, 255).astype(np.uint8)
# --- Combine left and right images side by side ---
stereo_pair = np.concatenate([left_eye, right_eye], axis=1)
stereo_image = Image.fromarray(stereo_pair)
# Step 3: Create anaglyph
anaglyph = np.stack([
left_eye[:, :, 0], # Red from left
right_eye[:, :, 1], # Green from right
right_eye[:, :, 2] # Blue from right
], axis=2)
anaglyph_img = Image.fromarray(anaglyph.astype(np.uint8))
left_img = Image.fromarray(left_eye)
right_img = Image.fromarray(right_eye)
return person_segmentation, stereo_image, anaglyph_img
# Gradio Interface
demo = gr.Interface(
fn=generate_3d_outputs,
inputs=[
gr.Image(label="Person Image"),
gr.Image(label="Optional Background Image"),
gr.Slider(minimum=0, maximum=20, step=1, value=10, label="interaxial distance"),
gr.Slider(minimum=10, maximum=200, step=10, value=100, label="Person Size %"),
],
outputs=[
gr.Image(label="segmentation mask"),
gr.Image(label="Stereo_pair"),
gr.Image(label="3D Anaglyph Image")
],
examples= get_image_names(),
title="3D Person Segmentation Viewer",
description="Upload a person photo and optionally a background image. Outputs anaglyph and stereo views."
)
if __name__ == "__main__":
demo.launch()
|