File size: 4,489 Bytes
380570c
 
 
b4454fe
4ef921e
380570c
 
 
 
 
 
 
 
 
 
b4454fe
380570c
f73d0f9
 
 
b4454fe
 
f73d0f9
380570c
 
 
b4454fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f73d0f9
b4454fe
f73d0f9
 
 
b4454fe
f73d0f9
 
380570c
 
 
 
f73d0f9
b4454fe
f73d0f9
 
380570c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f73d0f9
380570c
 
 
 
 
 
 
6eb4ed6
380570c
 
 
 
f73d0f9
380570c
f73d0f9
380570c
4ef921e
380570c
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import gradio as gr
import numpy as np
from PIL import Image
from utils import load_model, segment_person, resize_image, split_stereo_image,resize_image_to_width, resize_mask, resize_images
from testing import get_image_names
# Load model and processor once
processor, model = load_model()

# Default background (solid color)
default_bg = Image.new("RGB", (512, 512), color=(95, 147, 89))


def generate_3d_outputs(person_img, background_img=None, shift_pixels=10,  person_size=100):
    # Resize images to match

    background_img = background_img if background_img is not None else default_bg

    # Split background image into left and right halves
    leftBackground, rightBackground = split_stereo_image(Image.fromarray(background_img))

    ## Match person image to background image width
    image = resize_image_to_width(person_img, leftBackground)

    # Step 1: Segment person
    mask = segment_person(image, processor, model)

    # Resize mask based on person_size percentage
    mask = resize_mask(person_size, mask)

    # Resize image based on person_size percentage
    image_np = resize_images(image, person_size)

    # Apply mask to image
    person_only = image_np * mask
    person_segmentation = np.clip(person_only, 0, 255).astype(np.uint8)

    # Resize mask and person_only to match background dimensions while preserving content
    target_height, target_width = leftBackground.shape[:2]
    current_height, current_width = mask.shape[:2]

    # Calculate padding
    pad_top = max(0, (target_height - current_height) // 2)
    pad_bottom = max(0, target_height - current_height - pad_top)
    pad_left = max(0, (target_width - current_width) // 2)
    pad_right = max(0, target_width - current_width - pad_left)

    # Pad mask and person_only arrays
    mask = np.pad(mask, ((pad_top, pad_bottom), (pad_left, pad_right), (0,0)), mode='constant')    
    person_only = np.pad(person_segmentation, ((pad_top, pad_bottom), (pad_left, pad_right), (0,0)), mode='constant')


    # CROP MASK TO MATCH BACKGROUND DIMENSIONS FROM CENTER OF BACKGROUND
    if(mask.shape[0] > target_height or mask.shape[1] > target_width):
        mask = mask[mask.shape[0]//2-target_height//2:mask.shape[0]//2+target_height//2, mask.shape[1]//2-target_width//2:mask.shape[1]//2+target_width//2, :]
        person_only = person_only[person_only.shape[0]//2-target_height//2:person_only.shape[0]//2+target_height//2, person_only.shape[1]//2-target_width//2:person_only.shape[1]//2+target_width//2, :]

    # Convert background images to numpy arrays
    leftBackground_np = np.array(leftBackground)
    rightBackground_np = np.array(rightBackground)

    # Apply mask to background images
    leftBackground_only = leftBackground_np * (1 - mask)
    rightBackground_only = rightBackground_np * (1 - mask)

    # Step 2: Create stereo pair
    person_left = np.roll(person_only, shift=-shift_pixels, axis=1)
    person_right = np.roll(person_only, shift=shift_pixels, axis=1)
    
    
    left_eye = np.clip(person_right + leftBackground_only, 0, 255).astype(np.uint8)
    right_eye = np.clip(person_left + rightBackground_only, 0, 255).astype(np.uint8)

    # --- Combine left and right images side by side ---
    stereo_pair = np.concatenate([left_eye, right_eye], axis=1)
    stereo_image = Image.fromarray(stereo_pair)

    # Step 3: Create anaglyph
    anaglyph = np.stack([
        left_eye[:, :, 0],  # Red from left
        right_eye[:, :, 1],  # Green from right
        right_eye[:, :, 2]   # Blue from right
    ], axis=2)

    anaglyph_img = Image.fromarray(anaglyph.astype(np.uint8))
    left_img = Image.fromarray(left_eye)
    right_img = Image.fromarray(right_eye)

    return person_segmentation, stereo_image, anaglyph_img

# Gradio Interface
demo = gr.Interface(
    fn=generate_3d_outputs,
    inputs=[
        gr.Image(label="Person Image"),
        gr.Image(label="Optional Background Image"),
        gr.Slider(minimum=0, maximum=20, step=1, value=10, label="interaxial distance"),
        gr.Slider(minimum=10, maximum=200, step=10, value=100, label="Person Size %"),
  
    ],
    outputs=[
        gr.Image(label="segmentation mask"),
        gr.Image(label="Stereo_pair"),
        gr.Image(label="3D Anaglyph Image")
    ],
    examples= get_image_names(),
    title="3D Person Segmentation Viewer",
    description="Upload a person photo and optionally a background image. Outputs anaglyph and stereo views."
)

if __name__ == "__main__":
    demo.launch()