Spaces:
Sleeping
Sleeping
import torch | |
import gradio as gr | |
from transformers import pipeline | |
MODEL_NAME = "BlueRaccoon/whisper-small-kab" | |
lang = "uz" # Used uz instead of kab | |
device = 0 if torch.cuda.is_available() else "cpu" | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=MODEL_NAME, | |
chunk_length_s=30, | |
device=device, | |
) | |
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe") | |
def transcribe(microphone): | |
if microphone is None: | |
return "ERROR: You need to record or upload an audio file." | |
text = pipe(microphone)["text"] | |
return text | |
with gr.Blocks() as demo: | |
with gr.Tab("Transcribe Kabyle Audio"): | |
gr.Markdown( | |
f""" | |
# Kabyle Whisper Demo: Transcribe Audio | |
Transcribe Kabyle audio recorded from the microphone or uploaded as a file. This demo uses the fine-tuned | |
checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe Kabyle audio | |
files of arbitrary length. | |
""" | |
) | |
# Input for microphone recording only | |
microphone_input = gr.Audio(type="filepath", label="Record or Upload Kabyle Audio") | |
gr.Interface( | |
fn=transcribe, | |
inputs=[microphone_input], | |
outputs=gr.Textbox(label="Transcription"), | |
) | |
demo.launch() | |