Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -43,6 +43,7 @@ gradio_app = gr.Interface(
|
|
43 |
if __name__ == "__main__":
|
44 |
gradio_app.launch()"""
|
45 |
|
|
|
46 |
import gradio as gr
|
47 |
from ultralytics import YOLO
|
48 |
from PIL import Image
|
@@ -61,12 +62,23 @@ def predict(input_img):
|
|
61 |
# Perform inference
|
62 |
results = model(image_array)
|
63 |
|
|
|
|
|
|
|
64 |
# Extract detected class names
|
65 |
detected_classes = [model.names[int(cls)] for cls in results[0].boxes.cls]
|
|
|
66 |
|
67 |
# Render results on the image
|
68 |
-
rendered_image = results[0].plot() #
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
return output_image, {cls: 1.0 for cls in detected_classes} # Dummy scores for simplicity
|
72 |
except Exception as e:
|
@@ -75,7 +87,7 @@ def predict(input_img):
|
|
75 |
|
76 |
# Gradio app configuration
|
77 |
gradio_app = gr.Interface(
|
78 |
-
predict,
|
79 |
inputs=gr.Image(label="Upload an Image", type="pil"),
|
80 |
outputs=[
|
81 |
gr.Image(label="Predicted Image with Bounding Boxes"), # Rendered image with bounding boxes
|
@@ -88,3 +100,4 @@ gradio_app = gr.Interface(
|
|
88 |
if __name__ == "__main__":
|
89 |
gradio_app.launch()
|
90 |
|
|
|
|
43 |
if __name__ == "__main__":
|
44 |
gradio_app.launch()"""
|
45 |
|
46 |
+
|
47 |
import gradio as gr
|
48 |
from ultralytics import YOLO
|
49 |
from PIL import Image
|
|
|
62 |
# Perform inference
|
63 |
results = model(image_array)
|
64 |
|
65 |
+
# Debug: Log the results
|
66 |
+
print(f"Detection results: {results}")
|
67 |
+
|
68 |
# Extract detected class names
|
69 |
detected_classes = [model.names[int(cls)] for cls in results[0].boxes.cls]
|
70 |
+
print(f"Detected classes: {detected_classes}")
|
71 |
|
72 |
# Render results on the image
|
73 |
+
rendered_image = results[0].plot() # Render bounding boxes
|
74 |
+
if rendered_image is None:
|
75 |
+
print("Rendered image is None. Something went wrong in the plot() method.")
|
76 |
+
|
77 |
+
# Debug: Log image shape after rendering
|
78 |
+
print(f"Rendered image shape: {rendered_image.shape}")
|
79 |
+
|
80 |
+
# Convert the rendered image to a PIL image for output
|
81 |
+
output_image = Image.fromarray(rendered_image)
|
82 |
|
83 |
return output_image, {cls: 1.0 for cls in detected_classes} # Dummy scores for simplicity
|
84 |
except Exception as e:
|
|
|
87 |
|
88 |
# Gradio app configuration
|
89 |
gradio_app = gr.Interface(
|
90 |
+
fn=predict,
|
91 |
inputs=gr.Image(label="Upload an Image", type="pil"),
|
92 |
outputs=[
|
93 |
gr.Image(label="Predicted Image with Bounding Boxes"), # Rendered image with bounding boxes
|
|
|
100 |
if __name__ == "__main__":
|
101 |
gradio_app.launch()
|
102 |
|
103 |
+
|