Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,49 +1,3 @@
|
|
1 |
-
"""import gradio as gr
|
2 |
-
from ultralytics import YOLO
|
3 |
-
from PIL import Image
|
4 |
-
import numpy as np
|
5 |
-
|
6 |
-
# Load the YOLO model
|
7 |
-
MODEL_URL = "https://huggingface.co/ayoubsa/yolo_model/resolve/main/best.pt"
|
8 |
-
model = YOLO(MODEL_URL)
|
9 |
-
|
10 |
-
# Define the prediction function
|
11 |
-
def predict(input_img):
|
12 |
-
try:
|
13 |
-
# Convert PIL Image to NumPy array
|
14 |
-
image_array = np.array(input_img)
|
15 |
-
|
16 |
-
# Perform inference
|
17 |
-
results = model(image_array)
|
18 |
-
|
19 |
-
# Extract detected class names
|
20 |
-
detected_classes = [model.names[int(cls)] for cls in results[0].boxes.cls]
|
21 |
-
|
22 |
-
# Render results on the image
|
23 |
-
results[0].plot() # Render bounding boxes on the image
|
24 |
-
output_image = Image.fromarray(results[0].orig_img)
|
25 |
-
|
26 |
-
return output_image, {cls: 1.0 for cls in detected_classes} # Dummy scores for simplicity
|
27 |
-
except Exception as e:
|
28 |
-
print(f"Error during processing: {e}")
|
29 |
-
return None, {"Error": str(e)}
|
30 |
-
|
31 |
-
# Gradio app configuration
|
32 |
-
gradio_app = gr.Interface(
|
33 |
-
predict,
|
34 |
-
inputs=gr.Image(label="Upload an Image", type="pil"),
|
35 |
-
outputs=[
|
36 |
-
gr.Image(label="Predicted Image with Bounding Boxes"), # Rendered image with bounding boxes
|
37 |
-
gr.Label(label="Detected Classes"), # Detected class names
|
38 |
-
],
|
39 |
-
title="YOLO Object Detection App",
|
40 |
-
description="Upload an image, and the YOLO model will detect objects in it.",
|
41 |
-
)
|
42 |
-
|
43 |
-
if __name__ == "__main__":
|
44 |
-
gradio_app.launch()"""
|
45 |
-
|
46 |
-
|
47 |
import gradio as gr
|
48 |
from ultralytics import YOLO
|
49 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from ultralytics import YOLO
|
3 |
from PIL import Image
|