kjysmu's picture
Upload 22 files
6ad6801 verified
raw
history blame
23.4 kB
import os
import librosa
from utils.chords import Chords
import re
from enum import Enum
import pyrubberband as pyrb
import torch
import math
class FeatureTypes(Enum):
cqt = 'cqt'
class Preprocess():
def __init__(self, config, feature_to_use, dataset_names, root_dir):
self.config = config
self.dataset_names = dataset_names
self.root_path = root_dir + '/'
self.time_interval = config.feature["hop_length"]/config.mp3["song_hz"]
self.no_of_chord_datapoints_per_sequence = math.ceil(config.mp3['inst_len'] / self.time_interval)
self.Chord_class = Chords()
# isophonic
self.isophonic_directory = self.root_path + 'isophonic/'
# uspop
self.uspop_directory = self.root_path + 'uspop/'
self.uspop_audio_path = 'audio/'
self.uspop_lab_path = 'annotations/uspopLabels/'
self.uspop_index_path = 'annotations/uspopLabels.txt'
# robbie williams
self.robbie_williams_directory = self.root_path + 'robbiewilliams/'
self.robbie_williams_audio_path = 'audio/'
self.robbie_williams_lab_path = 'chords/'
self.feature_name = feature_to_use
self.is_cut_last_chord = False
def find_mp3_path(self, dirpath, word):
for filename in os.listdir(dirpath):
last_dir = dirpath.split("/")[-2]
if ".mp3" in filename:
tmp = filename.replace(".mp3", "")
tmp = tmp.replace(last_dir, "")
filename_lower = tmp.lower()
filename_lower = " ".join(re.findall("[a-zA-Z]+", filename_lower))
if word.lower().replace(" ", "") in filename_lower.replace(" ", ""):
return filename
def find_mp3_path_robbiewilliams(self, dirpath, word):
for filename in os.listdir(dirpath):
if ".mp3" in filename:
tmp = filename.replace(".mp3", "")
filename_lower = tmp.lower()
filename_lower = filename_lower.replace("robbie williams", "")
filename_lower = " ".join(re.findall("[a-zA-Z]+", filename_lower))
filename_lower = self.song_pre(filename_lower)
if self.song_pre(word.lower()).replace(" ", "") in filename_lower.replace(" ", ""):
return filename
def get_all_files(self):
res_list = []
# isophonic
if "isophonic" in self.dataset_names:
for dirpath, dirnames, filenames in os.walk(self.isophonic_directory):
if not dirnames:
for filename in filenames:
if ".lab" in filename:
tmp = filename.replace(".lab", "")
song_name = " ".join(re.findall("[a-zA-Z]+", tmp)).replace("CD", "")
mp3_path = self.find_mp3_path(dirpath, song_name)
res_list.append([song_name, os.path.join(dirpath, filename), os.path.join(dirpath, mp3_path),
os.path.join(self.root_path, "result", "isophonic")])
# uspop
if "uspop" in self.dataset_names:
with open(os.path.join(self.uspop_directory, self.uspop_index_path)) as f:
uspop_lab_list = f.readlines()
uspop_lab_list = [x.strip() for x in uspop_lab_list]
for lab_path in uspop_lab_list:
spl = lab_path.split('/')
lab_artist = self.uspop_pre(spl[2])
lab_title = self.uspop_pre(spl[4][3:-4])
lab_path = lab_path.replace('./uspopLabels/', '')
lab_path = os.path.join(self.uspop_directory, self.uspop_lab_path, lab_path)
for filename in os.listdir(os.path.join(self.uspop_directory, self.uspop_audio_path)):
if not '.csv' in filename:
spl = filename.split('-')
mp3_artist = self.uspop_pre(spl[0])
mp3_title = self.uspop_pre(spl[1][:-4])
if lab_artist == mp3_artist and lab_title == mp3_title:
res_list.append([mp3_artist + mp3_title, lab_path,
os.path.join(self.uspop_directory, self.uspop_audio_path, filename),
os.path.join(self.root_path, "result", "uspop")])
break
# robbie williams
if "robbiewilliams" in self.dataset_names:
for dirpath, dirnames, filenames in os.walk(self.robbie_williams_directory):
if not dirnames:
for filename in filenames:
if ".txt" in filename and (not 'README' in filename):
tmp = filename.replace(".txt", "")
song_name = " ".join(re.findall("[a-zA-Z]+", tmp)).replace("GTChords", "")
mp3_dir = dirpath.replace("chords", "audio")
mp3_path = self.find_mp3_path_robbiewilliams(mp3_dir, song_name)
res_list.append([song_name, os.path.join(dirpath, filename), os.path.join(mp3_dir, mp3_path),
os.path.join(self.root_path, "result", "robbiewilliams")])
return res_list
def uspop_pre(self, text):
text = text.lower()
text = text.replace('_', '')
text = text.replace(' ', '')
text = " ".join(re.findall("[a-zA-Z]+", text))
return text
def song_pre(self, text):
to_remove = ["'", '`', '(', ')', ' ', '&', 'and', 'And']
for remove in to_remove:
text = text.replace(remove, '')
return text
def config_to_folder(self):
mp3_config = self.config.mp3
feature_config = self.config.feature
mp3_string = "%d_%.1f_%.1f" % \
(mp3_config['song_hz'], mp3_config['inst_len'],
mp3_config['skip_interval'])
feature_string = "%s_%d_%d_%d" % \
(self.feature_name.value, feature_config['n_bins'], feature_config['bins_per_octave'], feature_config['hop_length'])
return mp3_config, feature_config, mp3_string, feature_string
def generate_labels_features_new(self, all_list):
pid = os.getpid()
mp3_config, feature_config, mp3_str, feature_str = self.config_to_folder()
i = 0 # number of songs
j = 0 # number of impossible songs
k = 0 # number of tried songs
total = 0 # number of generated instances
stretch_factors = [1.0]
shift_factors = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6]
loop_broken = False
for song_name, lab_path, mp3_path, save_path in all_list:
# different song initialization
if loop_broken:
loop_broken = False
i += 1
print(pid, "generating features from ...", os.path.join(mp3_path))
if i % 10 == 0:
print(i, ' th song')
original_wav, sr = librosa.load(os.path.join(mp3_path), sr=mp3_config['song_hz'])
# make result path if not exists
# save_path, mp3_string, feature_string, song_name, aug.pt
result_path = os.path.join(save_path, mp3_str, feature_str, song_name.strip())
if not os.path.exists(result_path):
os.makedirs(result_path)
# calculate result
for stretch_factor in stretch_factors:
if loop_broken:
loop_broken = False
break
for shift_factor in shift_factors:
# for filename
idx = 0
chord_info = self.Chord_class.get_converted_chord(os.path.join(lab_path))
k += 1
# stretch original sound and chord info
x = pyrb.time_stretch(original_wav, sr, stretch_factor)
x = pyrb.pitch_shift(x, sr, shift_factor)
audio_length = x.shape[0]
chord_info['start'] = chord_info['start'] * 1/stretch_factor
chord_info['end'] = chord_info['end'] * 1/stretch_factor
last_sec = chord_info.iloc[-1]['end']
last_sec_hz = int(last_sec * mp3_config['song_hz'])
if audio_length + mp3_config['skip_interval'] < last_sec_hz:
print('loaded song is too short :', song_name)
loop_broken = True
j += 1
break
elif audio_length > last_sec_hz:
x = x[:last_sec_hz]
origin_length = last_sec_hz
origin_length_in_sec = origin_length / mp3_config['song_hz']
current_start_second = 0
# get chord list between current_start_second and current+song_length
while current_start_second + mp3_config['inst_len'] < origin_length_in_sec:
inst_start_sec = current_start_second
curSec = current_start_second
chord_list = []
# extract chord per 1/self.time_interval
while curSec < inst_start_sec + mp3_config['inst_len']:
try:
available_chords = chord_info.loc[(chord_info['start'] <= curSec) & (
chord_info['end'] > curSec + self.time_interval)].copy()
if len(available_chords) == 0:
available_chords = chord_info.loc[((chord_info['start'] >= curSec) & (
chord_info['start'] <= curSec + self.time_interval)) | (
(chord_info['end'] >= curSec) & (
chord_info['end'] <= curSec + self.time_interval))].copy()
if len(available_chords) == 1:
chord = available_chords['chord_id'].iloc[0]
elif len(available_chords) > 1:
max_starts = available_chords.apply(lambda row: max(row['start'], curSec),
axis=1)
available_chords['max_start'] = max_starts
min_ends = available_chords.apply(
lambda row: min(row.end, curSec + self.time_interval), axis=1)
available_chords['min_end'] = min_ends
chords_lengths = available_chords['min_end'] - available_chords['max_start']
available_chords['chord_length'] = chords_lengths
chord = available_chords.ix[available_chords['chord_length'].idxmax()]['chord_id']
else:
chord = 24
except Exception as e:
chord = 24
print(e)
print(pid, "no chord")
raise RuntimeError()
finally:
# convert chord by shift factor
if chord != 24:
chord += shift_factor * 2
chord = chord % 24
chord_list.append(chord)
curSec += self.time_interval
if len(chord_list) == self.no_of_chord_datapoints_per_sequence:
try:
sequence_start_time = current_start_second
sequence_end_time = current_start_second + mp3_config['inst_len']
start_index = int(sequence_start_time * mp3_config['song_hz'])
end_index = int(sequence_end_time * mp3_config['song_hz'])
song_seq = x[start_index:end_index]
etc = '%.1f_%.1f' % (
current_start_second, current_start_second + mp3_config['inst_len'])
aug = '%.2f_%i' % (stretch_factor, shift_factor)
if self.feature_name == FeatureTypes.cqt:
# print(pid, "make feature")
feature = librosa.cqt(song_seq, sr=sr, n_bins=feature_config['n_bins'],
bins_per_octave=feature_config['bins_per_octave'],
hop_length=feature_config['hop_length'])
else:
raise NotImplementedError
if feature.shape[1] > self.no_of_chord_datapoints_per_sequence:
feature = feature[:, :self.no_of_chord_datapoints_per_sequence]
if feature.shape[1] != self.no_of_chord_datapoints_per_sequence:
print('loaded features length is too short :', song_name)
loop_broken = True
j += 1
break
result = {
'feature': feature,
'chord': chord_list,
'etc': etc
}
# save_path, mp3_string, feature_string, song_name, aug.pt
filename = aug + "_" + str(idx) + ".pt"
torch.save(result, os.path.join(result_path, filename))
idx += 1
total += 1
except Exception as e:
print(e)
print(pid, "feature error")
raise RuntimeError()
else:
print("invalid number of chord datapoints in sequence :", len(chord_list))
current_start_second += mp3_config['skip_interval']
print(pid, "total instances: %d" % total)
def generate_labels_features_voca(self, all_list):
pid = os.getpid()
mp3_config, feature_config, mp3_str, feature_str = self.config_to_folder()
i = 0 # number of songs
j = 0 # number of impossible songs
k = 0 # number of tried songs
total = 0 # number of generated instances
stretch_factors = [1.0]
shift_factors = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6]
loop_broken = False
for song_name, lab_path, mp3_path, save_path in all_list:
save_path = save_path + '_voca'
# different song initialization
if loop_broken:
loop_broken = False
i += 1
print(pid, "generating features from ...", os.path.join(mp3_path))
if i % 10 == 0:
print(i, ' th song')
original_wav, sr = librosa.load(os.path.join(mp3_path), sr=mp3_config['song_hz'])
# save_path, mp3_string, feature_string, song_name, aug.pt
result_path = os.path.join(save_path, mp3_str, feature_str, song_name.strip())
if not os.path.exists(result_path):
os.makedirs(result_path)
# calculate result
for stretch_factor in stretch_factors:
if loop_broken:
loop_broken = False
break
for shift_factor in shift_factors:
# for filename
idx = 0
try:
chord_info = self.Chord_class.get_converted_chord_voca(os.path.join(lab_path))
except Exception as e:
print(e)
print(pid, " chord lab file error : %s" % song_name)
loop_broken = True
j += 1
break
k += 1
# stretch original sound and chord info
x = pyrb.time_stretch(original_wav, sr, stretch_factor)
x = pyrb.pitch_shift(x, sr, shift_factor)
audio_length = x.shape[0]
chord_info['start'] = chord_info['start'] * 1/stretch_factor
chord_info['end'] = chord_info['end'] * 1/stretch_factor
last_sec = chord_info.iloc[-1]['end']
last_sec_hz = int(last_sec * mp3_config['song_hz'])
if audio_length + mp3_config['skip_interval'] < last_sec_hz:
print('loaded song is too short :', song_name)
loop_broken = True
j += 1
break
elif audio_length > last_sec_hz:
x = x[:last_sec_hz]
origin_length = last_sec_hz
origin_length_in_sec = origin_length / mp3_config['song_hz']
current_start_second = 0
# get chord list between current_start_second and current+song_length
while current_start_second + mp3_config['inst_len'] < origin_length_in_sec:
inst_start_sec = current_start_second
curSec = current_start_second
chord_list = []
# extract chord per 1/self.time_interval
while curSec < inst_start_sec + mp3_config['inst_len']:
try:
available_chords = chord_info.loc[(chord_info['start'] <= curSec) & (chord_info['end'] > curSec + self.time_interval)].copy()
if len(available_chords) == 0:
available_chords = chord_info.loc[((chord_info['start'] >= curSec) & (chord_info['start'] <= curSec + self.time_interval)) | ((chord_info['end'] >= curSec) & (chord_info['end'] <= curSec + self.time_interval))].copy()
if len(available_chords) == 1:
chord = available_chords['chord_id'].iloc[0]
elif len(available_chords) > 1:
max_starts = available_chords.apply(lambda row: max(row['start'], curSec),axis=1)
available_chords['max_start'] = max_starts
min_ends = available_chords.apply(lambda row: min(row.end, curSec + self.time_interval), axis=1)
available_chords['min_end'] = min_ends
chords_lengths = available_chords['min_end'] - available_chords['max_start']
available_chords['chord_length'] = chords_lengths
chord = available_chords.ix[available_chords['chord_length'].idxmax()]['chord_id']
else:
chord = 169
except Exception as e:
chord = 169
print(e)
print(pid, "no chord")
raise RuntimeError()
finally:
# convert chord by shift factor
if chord != 169 and chord != 168:
chord += shift_factor * 14
chord = chord % 168
chord_list.append(chord)
curSec += self.time_interval
if len(chord_list) == self.no_of_chord_datapoints_per_sequence:
try:
sequence_start_time = current_start_second
sequence_end_time = current_start_second + mp3_config['inst_len']
start_index = int(sequence_start_time * mp3_config['song_hz'])
end_index = int(sequence_end_time * mp3_config['song_hz'])
song_seq = x[start_index:end_index]
etc = '%.1f_%.1f' % (
current_start_second, current_start_second + mp3_config['inst_len'])
aug = '%.2f_%i' % (stretch_factor, shift_factor)
if self.feature_name == FeatureTypes.cqt:
feature = librosa.cqt(song_seq, sr=sr, n_bins=feature_config['n_bins'],
bins_per_octave=feature_config['bins_per_octave'],
hop_length=feature_config['hop_length'])
else:
raise NotImplementedError
if feature.shape[1] > self.no_of_chord_datapoints_per_sequence:
feature = feature[:, :self.no_of_chord_datapoints_per_sequence]
if feature.shape[1] != self.no_of_chord_datapoints_per_sequence:
print('loaded features length is too short :', song_name)
loop_broken = True
j += 1
break
result = {
'feature': feature,
'chord': chord_list,
'etc': etc
}
# save_path, mp3_string, feature_string, song_name, aug.pt
filename = aug + "_" + str(idx) + ".pt"
torch.save(result, os.path.join(result_path, filename))
idx += 1
total += 1
except Exception as e:
print(e)
print(pid, "feature error")
raise RuntimeError()
else:
print("invalid number of chord datapoints in sequence :", len(chord_list))
current_start_second += mp3_config['skip_interval']
print(pid, "total instances: %d" % total)