ayyuce commited on
Commit
0da542d
·
verified ·
1 Parent(s): 37ada06

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -7
app.py CHANGED
@@ -2,30 +2,23 @@ import gradio as gr
2
  from transformers import AutoModelForCausalLM, AutoTokenizer
3
  import torch
4
 
5
-
6
- # Load the tokenizer and model
7
  model_name = "ayyuce/SmolGRPO-135M"
8
  tokenizer = AutoTokenizer.from_pretrained(model_name)
9
  model = AutoModelForCausalLM.from_pretrained(model_name)
10
 
11
- # Initialize the text-generation pipeline
12
  generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=-1) # device=-1 ensures CPU usage
13
 
14
  def generate_text(prompt, max_new_tokens, temperature, top_p, do_sample):
15
- # Define generation parameters
16
  generate_kwargs = {
17
  "max_new_tokens": int(max_new_tokens),
18
  "temperature": float(temperature),
19
  "top_p": float(top_p),
20
  "do_sample": do_sample == "Yes",
21
  }
22
- # Generate text
23
  generated_list = generator(prompt, **generate_kwargs)
24
- # Extract the generated text from the first item in the list
25
  generated_text = generated_list[0]["generated_text"]
26
  return generated_text
27
 
28
- # Create the Gradio interface
29
  with gr.Blocks() as demo:
30
  gr.Markdown("# SmolGRPO-135M Text Generator")
31
  with gr.Row():
 
2
  from transformers import AutoModelForCausalLM, AutoTokenizer
3
  import torch
4
 
 
 
5
  model_name = "ayyuce/SmolGRPO-135M"
6
  tokenizer = AutoTokenizer.from_pretrained(model_name)
7
  model = AutoModelForCausalLM.from_pretrained(model_name)
8
 
 
9
  generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=-1) # device=-1 ensures CPU usage
10
 
11
  def generate_text(prompt, max_new_tokens, temperature, top_p, do_sample):
 
12
  generate_kwargs = {
13
  "max_new_tokens": int(max_new_tokens),
14
  "temperature": float(temperature),
15
  "top_p": float(top_p),
16
  "do_sample": do_sample == "Yes",
17
  }
 
18
  generated_list = generator(prompt, **generate_kwargs)
 
19
  generated_text = generated_list[0]["generated_text"]
20
  return generated_text
21
 
 
22
  with gr.Blocks() as demo:
23
  gr.Markdown("# SmolGRPO-135M Text Generator")
24
  with gr.Row():