Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,30 +2,23 @@ import gradio as gr
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
|
5 |
-
|
6 |
-
# Load the tokenizer and model
|
7 |
model_name = "ayyuce/SmolGRPO-135M"
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
10 |
|
11 |
-
# Initialize the text-generation pipeline
|
12 |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=-1) # device=-1 ensures CPU usage
|
13 |
|
14 |
def generate_text(prompt, max_new_tokens, temperature, top_p, do_sample):
|
15 |
-
# Define generation parameters
|
16 |
generate_kwargs = {
|
17 |
"max_new_tokens": int(max_new_tokens),
|
18 |
"temperature": float(temperature),
|
19 |
"top_p": float(top_p),
|
20 |
"do_sample": do_sample == "Yes",
|
21 |
}
|
22 |
-
# Generate text
|
23 |
generated_list = generator(prompt, **generate_kwargs)
|
24 |
-
# Extract the generated text from the first item in the list
|
25 |
generated_text = generated_list[0]["generated_text"]
|
26 |
return generated_text
|
27 |
|
28 |
-
# Create the Gradio interface
|
29 |
with gr.Blocks() as demo:
|
30 |
gr.Markdown("# SmolGRPO-135M Text Generator")
|
31 |
with gr.Row():
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
|
|
|
|
|
5 |
model_name = "ayyuce/SmolGRPO-135M"
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
8 |
|
|
|
9 |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=-1) # device=-1 ensures CPU usage
|
10 |
|
11 |
def generate_text(prompt, max_new_tokens, temperature, top_p, do_sample):
|
|
|
12 |
generate_kwargs = {
|
13 |
"max_new_tokens": int(max_new_tokens),
|
14 |
"temperature": float(temperature),
|
15 |
"top_p": float(top_p),
|
16 |
"do_sample": do_sample == "Yes",
|
17 |
}
|
|
|
18 |
generated_list = generator(prompt, **generate_kwargs)
|
|
|
19 |
generated_text = generated_list[0]["generated_text"]
|
20 |
return generated_text
|
21 |
|
|
|
22 |
with gr.Blocks() as demo:
|
23 |
gr.Markdown("# SmolGRPO-135M Text Generator")
|
24 |
with gr.Row():
|