Spaces:
Runtime error
Runtime error
File size: 5,509 Bytes
a246647 fc92389 a246647 fc92389 a246647 fc92389 a246647 fc92389 364e0ff fc92389 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import gradio as gr
import whisper
from transformers import pipeline
import pandas as pd, numpy as np
import os
import torchaudio
import librosa
from scipy.io.wavfile import write
import shutil
import soundfile as sf
import noisereduce as nr
from scipy.stats import skew
from tqdm import tqdm
import requests
import pickle
import dash
import dash_bootstrap_components as dbc
from dash import html
sr = 8000
url = "https://huggingface.co/spaces/aslanovaf/Sentiment_Analysis_Azerbaijani/resolve/main/sentiment_model_8000.pickle"
hf_token = os.environ.get("HF_TOKEN")
headers = {"Authorization": f"Bearer {hf_token}"}
response = requests.get(url, headers=headers)
if response.status_code == 200:
model = pickle.loads(response.content)
else:
st.markdown(f"Failed to download TTS from {url} (Status code: {response.status_code})")
def split_full_audio_15_sec(audio_file):
audio, orig_sr = sf.read(audio_file)
audio = librosa.resample(y=audio, orig_sr=orig_sr, target_sr=sr)
chunk_length = 15 * sr
total_length = len(audio)
start_index = 0
end_index = min(chunk_length, total_length)
f = 0
chunks = []
while start_index < total_length:
chunk = audio[start_index:end_index]
chunk_name = f"example_{f}.wav"
chunk_duration = len(chunk)/sr
if chunk_duration<3:
break
chunks.append(chunk)
start_index = end_index
end_index = min(end_index + chunk_length, total_length)
f+=1
return chunks
def get_mfcc(name):
resampled_audio = name
try:
reduced_noise = nr.reduce_noise(resampled_audio, sr=sr)
ft1 = librosa.feature.mfcc(y=reduced_noise, sr = sr, n_mfcc=16)
ft2 = librosa.feature.zero_crossing_rate(reduced_noise)[0]
ft3 = librosa.feature.spectral_rolloff(y=reduced_noise)[0]
ft4 = librosa.feature.spectral_centroid(y=reduced_noise)[0]
ft1_trunc = np.hstack((np.mean(ft1, axis=1), np.std(ft1, axis=1), skew(ft1, axis = 1), np.max(ft1, axis = 1), np.min(ft1, axis = 1)))
ft2_trunc = np.hstack((np.mean(ft2), np.std(ft2), skew(ft2), np.max(ft2), np.min(ft2)))
ft3_trunc = np.hstack((np.mean(ft3), np.std(ft3), skew(ft3), np.max(ft3), np.min(ft3)))
ft4_trunc = np.hstack((np.mean(ft4), np.std(ft4), skew(ft4), np.max(ft4), np.min(ft4)))
return pd.Series(np.hstack((ft1_trunc, ft2_trunc, ft3_trunc, ft4_trunc)))
except:
print('bad file')
return pd.Series([0]*95)
def analyze_sentiment(audio):
chunks = split_full_audio_15_sec(audio)
chunked_df = pd.DataFrame(data={'Chunk_order': [f'Chunk_{i+1}' for i in range(len(chunks))], 'Data': chunks})
df_features = chunked_df['Data'].apply(get_mfcc)
df = pd.concat([chunked_df, df_features], axis=1)
df = df.drop(columns=['Data'])
df.columns = ['Chunk_order']+[f'Feature_{i+1}' for i in range(95)]
df['Prediction'] = model.predict(df.drop(columns=['Chunk_order']))
df['Prediction'] = df['Prediction'].map({
'pozitive_normal':'Normal',
'scope':'Silence',
'neqativ':'Negative'
})
clean_df = df[['Chunk_order', 'Prediction']]
predictions = df['Prediction'].tolist()
final_prediction = 'Negative' if 'Negative' in predictions else 'Normal' if 'Normal' in predictions else 'Silence'
final_prediction_2x = 'Negative' if predictions.count('Negative')>1 else 'Normal' if 'Normal' in predictions else 'Silence'
color_map = {
'Normal':'success',
'Silence': 'warning',
'Negative': 'danger'
}
return (', '.join(predictions), final_prediction)
title = """<h1 align="center">π€ Azerbaijani Audio Speech Sentiment Analysis π¬</h1>"""
image_path = "thmbnail.jpg"
description = """
π» This demo showcases a general-purpose sentiment analysis process. It is trained on a collection of audio calls from banking/fintech industries based on audio features. The main analysis predicts one of the categories (Normal/Negative/Silence) for each 15-second bucket in the audio. The final category for the whole audio is also estimated.
<br>
βοΈ Components of the tool:<br>
<br>
- Sentiment analysis directly of the audios.<br>
<br>
β Use the microphone for real-time audio recording.<br>
β Or upload an audio file.<br>
<br>
β‘οΈ The model will extract audio features and perform sentiment analysis on the audio.<br>
"""
custom_css = """
#banner-image {
display: block;
margin-left: auto;
margin-right: auto;
}
#chat-message {
font-size: 14px;
min-height: 300px;
}
"""
block = gr.Blocks(css=custom_css)
with block:
gr.HTML(title)
with gr.Row():
with gr.Column():
gr.HTML(description)
with gr.Column():
gr.Image(image_path, elem_id="banner-image", show_label=False)
gr.Interface(
fn=analyze_sentiment,
inputs=[
gr.Audio(sources=["upload", "microphone"], type="filepath", label="Input Audio"),
],
outputs=[gr.Textbox(label="Sentiment Analysis Results of 15-second buckets"),gr.Textbox(label="Final Prediction")],
# layout="vertical",
# theme="huggingface",
examples=[
["./Recording_1.wav", "analyze_sentiment"],
["./Recording_2.wav", "analyze_sentiment"],
],
cache_examples=False,
allow_flagging="never",
)
# gr.TabbedInterface([mic, file], ["Audio from Microphone", "Audio from File"])
block.launch()
|