File size: 12,608 Bytes
b6b3361 fb3c56f 00866c1 257e92c 1ffdc41 4d96073 07631e1 4d96073 6234905 07631e1 235bceb 74a9029 619ea62 41ab4ee 97102e7 619ea62 4d96073 97102e7 4d96073 97102e7 257e92c 122cc50 257e92c 4d96073 257e92c 122cc50 257e92c 4d96073 257e92c 5bc8e83 4d96073 5bc8e83 122cc50 a309f78 4d96073 74a9029 4d96073 328e862 4d96073 b667879 4d96073 b667879 4d96073 07631e1 4d96073 6aa3952 4d96073 6aa3952 4d96073 826930b 4d96073 d8b00e3 4d96073 da84aa4 4d96073 07631e1 4d96073 07631e1 fea8f15 4d96073 e48e5e4 071af57 4d96073 071af57 fea8f15 4d96073 d8b00e3 4d96073 da84aa4 c4e11f2 4d96073 c4e11f2 4d96073 da84aa4 4d96073 da84aa4 74a9029 257e92c a6818a7 257e92c 74a9029 4d96073 74a9029 4d96073 257e92c da84aa4 be1fb13 48a69b6 07631e1 d8b00e3 4d96073 d8b00e3 4d96073 d8b00e3 07631e1 12bb931 07631e1 a309f78 da84aa4 6aa3952 e48e5e4 d8b00e3 4d96073 e48e5e4 12d43ff e48e5e4 4d96073 071af57 4d96073 e48e5e4 d8b00e3 4d96073 826930b 4d96073 826930b 4d96073 f149c0d d8b00e3 4d96073 d8b00e3 4d96073 5745bde cf3d34c 9f5ffb5 4d96073 9f5ffb5 4d96073 9f5ffb5 4d96073 6d4a898 cf3d34c 4d96073 4661cbb 781dafe 4661cbb 6b3b7ad 4661cbb 6b3b7ad 4661cbb 1d35c27 4661cbb 4d96073 6b3b7ad 41ab4ee 6b3b7ad 303d9ae 6b3b7ad 4d96073 33e23a9 4d96073 33e23a9 4d96073 fb3c56f f2fd3af 4d96073 5e07e0e 4d96073 5e07e0e 4d96073 781dafe 4d96073 781dafe 4d96073 d137ecb 4d96073 d8b00e3 4d96073 d8b00e3 4d96073 f149c0d 4d96073 f149c0d 4d96073 f149c0d 4d96073 f149c0d 4d96073 f149c0d 4d96073 f149c0d 4d96073 f149c0d 4d96073 f149c0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
import os
import time
from io import BytesIO
from langchain_core.pydantic_v1 import BaseModel, Field
from fastapi import FastAPI, HTTPException, Query, Request
from fastapi.responses import StreamingResponse, Response
from fastapi.middleware.cors import CORSMiddleware
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from TextGen.suno import custom_generate_audio, get_audio_information, generate_lyrics
# from TextGen.diffusion import generate_image
# from coqui import predict
from langchain_google_genai import (
ChatGoogleGenerativeAI,
HarmBlockThreshold,
HarmCategory,
)
from TextGen import app
from gradio_client import Client, handle_file
from typing import List
from elevenlabs.client import ElevenLabs
from elevenlabs import Voice, VoiceSettings, stream
Eleven_client = ElevenLabs(
api_key=os.environ["ELEVEN_API_KEY"], # Defaults to ELEVEN_API_KEY
)
Last_message = None
class PlayLastMusic(BaseModel):
'''plays the lastest created music '''
Desicion: str = Field(
..., description="Yes or No"
)
class CreateLyrics(BaseModel):
'''create some Lyrics for a new music'''
Desicion: str = Field(
..., description="Yes or No"
)
class CreateNewMusic(BaseModel):
'''create a new music with the Lyrics previously computed'''
Name: str = Field(
..., description="tags to describe the new music"
)
class SongRequest(BaseModel):
prompt: str | None = None
tags: List[str] | None = None
class Message(BaseModel):
npc: str | None = None
messages: List[str] | None = None
class ImageGen(BaseModel):
prompt: str | None = None
class VoiceMessage(BaseModel):
npc: str | None = None
input: str | None = None
language: str | None = "en"
genre: str | None = "Male"
song_base_api = os.environ["VERCEL_API"]
my_hf_token = os.environ["HF_TOKEN"]
tts_client = Client("Jofthomas/xtts", hf_token=my_hf_token)
main_npcs = {
"Blacksmith": "./voices/Blacksmith.mp3",
"Herbalist": "./voices/female.mp3",
"Bard": "./voices/Bard_voice.mp3"
}
main_npcs_elevenlabs = {
"Blacksmith": "yYdk7n49vTsUKiXxnosS",
"Herbalist": "143zSsxc4O5ifS97lPCa",
"Bard": "143zSsxc4O5ifS97lPCa"
}
main_npc_system_prompts = {
"Blacksmith": "You are a blacksmith in a video game",
"Herbalist": "You are an herbalist in a video game",
"Witch": "You are a witch in a video game. You are disguised as a potion seller in a small city where adventurers come to challenge the portal. You are selling some magic spells in a UI that the player only sees. Don't event too much lore and just follow the standard role of a merchant.",
"Bard": "You are a bard in a video game"
}
class Generate(BaseModel):
text: str
class Rooms(BaseModel):
rooms: List
room_of_interest: List
index_exit: int
possible_entities: List
logs: List
class Room_placements(BaseModel):
placements: dict
class Invoke(BaseModel):
system_prompt: str
message: str
def generate_text(messages: List[str], npc: str):
print(npc)
if npc in main_npcs:
system_prompt = main_npc_system_prompts[npc]
else:
system_prompt = "you're a character in a video game. Play along."
print(system_prompt)
new_messages = [{"role": "user", "content": system_prompt}]
for index, message in enumerate(messages):
if index % 2 == 0:
new_messages.append({"role": "user", "content": message})
else:
new_messages.append({"role": "assistant", "content": message})
print(new_messages)
# Initialize the LLM
llm = ChatGoogleGenerativeAI(
model="gemini-1.5-pro-latest",
max_output_tokens=100,
temperature=1,
safety_settings={
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE
},
)
if npc == "bard":
llm = llm.bind_tools([PlayLastMusic, CreateNewMusic, CreateLyrics])
llm_response = llm.invoke(new_messages)
print(llm_response)
return Generate(text=llm_response.content)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
def inference_model(system_messsage, prompt):
new_messages = [{"role": "user", "content": system_messsage}, {"role": "user", "content": prompt}]
llm = ChatGoogleGenerativeAI(
model="gemini-1.5-pro-latest",
max_output_tokens=100,
temperature=1,
safety_settings={
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE
},
)
llm_response = llm.invoke(new_messages)
print(llm_response)
return Generate(text=llm_response.content)
@app.get("/", tags=["Home"])
def api_home():
return {'detail': 'Everchanging Quest backend, nothing to see here'}
@app.post("/api/generate", summary="Generate text from prompt", tags=["Generate"], response_model=Generate)
def inference(message: Message):
return generate_text(messages=message.messages, npc=message.npc)
@app.post("/invoke_model")
def story(prompt: Invoke):
return inference_model(system_messsage=prompt.system_prompt, prompt=prompt.message)
@app.post("/generate_level")
def placement(input: Rooms):
print(input)
markdown_map = generate_map_markdown(input)
print(markdown_map)
answer = {
"key": "value"
}
return answer
# Dummy function for now
def determine_vocie_from_npc(npc, genre):
if npc in main_npcs:
return main_npcs[npc]
else:
if genre == "Male":
return "./voices/default_male.mp3"
if genre == "Female":
return "./voices/default_female.mp3"
else:
return "./voices/narator_out.wav"
# Dummy function for now
def determine_elevenLav_voice_from_npc(npc, genre):
if npc in main_npcs_elevenlabs:
return main_npcs_elevenlabs[npc]
else:
if genre == "Male":
return "bIHbv24MWmeRgasZH58o"
if genre == "Female":
return "pFZP5JQG7iQjIQuC4Bku"
else:
return "TX3LPaxmHKxFdv7VOQHJ"
@app.post("/generate_wav")
async def generate_wav(message: VoiceMessage):
try:
voice = determine_vocie_from_npc(message.npc, message.genre)
audio_file_pth = handle_file(voice)
# Generator function to yield audio chunks
async def audio_stream():
result = tts_client.predict(
prompt=message.input,
language=message.language,
audio_file_pth=audio_file_pth,
mic_file_path=None,
use_mic=False,
voice_cleanup=False,
no_lang_auto_detect=False,
agree=True,
api_name="/predict"
)
for sampling_rate, audio_chunk in result:
yield audio_chunk.tobytes()
await asyncio.sleep(0) # Yield control to the event loop
# Return the generated audio as a streaming response
return StreamingResponse(audio_stream(), media_type="audio/wav")
except httpx.HTTPStatusError as e:
if e.response.status_code == 403:
raise HTTPException(status_code=403, detail="Access to the file is forbidden. Please check the file permissions and try again.")
else:
raise HTTPException(status_code=500, detail=str(e))
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/generate_voice_eleven", response_class=StreamingResponse)
@app.post("/generate_voice_eleven", response_class=StreamingResponse)
def generate_voice_eleven(message: VoiceMessage = None):
global Last_message # Declare Last_message as global
if message is None:
message = Last_message
else:
Last_message = message
def audio_stream():
this_voice_id = determine_elevenLav_voice_from_npc(message.npc, message.genre)
# Generate the audio stream from ElevenLabs
for chunk in Eleven_client.generate(text=message.input,
voice=Voice(
voice_id=this_voice_id,
settings=VoiceSettings(stability=0.71, similarity_boost=0.5, style=0.0, use_speaker_boost=True)
),
stream=True):
yield chunk
return StreamingResponse(audio_stream(), media_type="audio/mpeg")
# @app.get("/generate_voice_coqui", response_class=StreamingResponse)
# @app.post("/generate_voice_coqui", response_class=StreamingResponse)
# def generate_voice_coqui(message: VoiceMessage = None):
# global Last_message
# if message is None:
# message = Last_message
# else:
# Last_message = message
#
# def audio_stream():
# voice = determine_vocie_from_npc(message.npc, message.genre)
# result = predict(
# prompt=message.input,
# language=message.language,
# audio_file_pth=voice,
# mic_file_path=None,
# use_mic=False,
# voice_cleanup=False,
# no_lang_auto_detect=False,
# agree=True,
# )
# # Generate the audio stream from ElevenLabs
# for chunk in result:
# print("received : ",chunk)
# yield chunk
#
# return StreamingResponse(audio_stream(), media_type="audio/mpeg")
@app.get("/generate_song")
async def generate_song():
text = """You are a bard in a video game singing the tales of a little girl in red hood."""
song_lyrics = generate_lyrics({
"prompt": f"{text}",
})
data = custom_generate_audio({
"prompt": song_lyrics['text'],
"tags": "male bard",
"title": "Everchangin_Quest_song",
"wait_audio": True,
})
infos = get_audio_information(f"{data[0]['id']},{data[1]['id']}")
return infos
# @app.post('/generate_image')
# def Imagen(image: ImageGen = None):
# pil_image = generate_image(image.prompt)
#
# # Convert the PIL Image to bytes
# img_byte_arr = BytesIO()
# pil_image.save(img_byte_arr, format='PNG')
# img_byte_arr = img_byte_arr.getvalue()
#
# # Return the image as a PNG response
# return Response(content=img_byte_arr, media_type="image/png")
def generate_map_markdown(data):
import numpy as np
# Define the room structure with walls and markers
def create_room(room_char):
return [
f"βββββ",
f"β {room_char} β",
f"βββββ"
]
# Extract rooms and rooms of interest
rooms = [eval(room) for room in data["rooms"]]
rooms_of_interest = [eval(room) for room in data["room_of_interest"]]
# Determine grid size
min_x = min(room[0] for room in rooms)
max_x = max(room[0] for room in rooms)
min_y = min(room[1] for room in rooms)
max_y = max(room[1] for room in rooms)
# Create grid with empty spaces represented by a room-like structure
map_height = (max_y - min_y + 1) * 3
map_width = (max_x - min_x + 1) * 5
grid = np.full((map_height, map_width), " ")
# Populate grid with rooms and their characteristics
for i, room in enumerate(rooms):
x, y = room
x_offset = (x - min_x) * 5
y_offset = (max_y - y) * 3
if room == (0, 0):
room_char = "X"
elif room in rooms_of_interest:
room_char = "P" if i == data["index_exit"] else "?"
else:
room_char = " "
room_structure = create_room(room_char)
for j, row in enumerate(room_structure):
grid[y_offset + j, x_offset:x_offset + 5] = list(row)
# Convert grid to a string format suitable for display
markdown_map = "\n".join("".join(row) for row in grid)
# Return the map wrapped in triple backticks for proper display in markdown
return f"```\n{markdown_map}\n```" |