File size: 9,732 Bytes
b2108ae
e5e340b
 
d511c44
e5e340b
 
 
c0809e5
e5e340b
 
 
 
d511c44
 
 
 
 
b2108ae
 
e5e340b
d511c44
 
 
 
 
e5e340b
b2108ae
e5e340b
d511c44
 
 
 
 
e5e340b
b2108ae
e5e340b
d511c44
 
 
 
 
e5e340b
b2108ae
e5e340b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2108ae
e5e340b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d511c44
e5e340b
 
 
 
 
 
 
 
d511c44
 
90869c2
d511c44
90869c2
d511c44
 
 
 
 
 
 
 
 
 
 
 
 
90869c2
d511c44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90869c2
d511c44
90869c2
d511c44
 
 
 
 
 
90869c2
d511c44
 
 
90869c2
 
d511c44
 
 
90869c2
 
 
d511c44
 
 
 
90869c2
 
d511c44
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import pytorch_lightning as pl
from neuralforecast.core import NeuralForecast
from neuralforecast.models import NHITS, TimesNet, LSTM, TFT
from neuralforecast.losses.pytorch import HuberMQLoss
from neuralforecast.utils import AirPassengersDF
import time

# Paths for saving models
nhits_paths = {
    'D': './results/M4/NHITS/daily',
    'M': './results/M4/NHITS/monthly',
    'H': './results/M4/NHITS/hourly',
    'W': './results/M4/NHITS/weekly',
    'Y': './results/M4/NHITS/yearly'
}

timesnet_paths = {
    'D': './results/M4/TimesNet/daily',
    'M': './results/M4/TimesNet/monthly',
    'H': './results/M4/TimesNet/hourly',
    'W': './results/M4/TimesNet/weekly',
    'Y': './results/M4/TimesNet/yearly'
}

lstm_paths = {
    'D': './results/M4/LSTM/daily',
    'M': './results/M4/LSTM/monthly',
    'H': './results/M4/LSTM/hourly',
    'W': './results/M4/LSTM/weekly',
    'Y': './results/M4/LSTM/yearly'
}

tft_paths = {
    'D': './results/M4/TFT/daily',
    'M': './results/M4/TFT/monthly',
    'H': './results/M4/TFT/hourly',
    'W': './results/M4/TFT/weekly',
    'Y': './results/M4/TFT/yearly'
}

@st.cache_resource
def load_model(path, freq):
    nf = NeuralForecast.load(path=path)
    return nf

nhits_models = {freq: load_model(path, freq) for freq, path in nhits_paths.items()}
timesnet_models = {freq: load_model(path, freq) for freq, path in timesnet_paths.items()}
lstm_models = {freq: load_model(path, freq) for freq, path in lstm_paths.items()}
tft_models = {freq: load_model(path, freq) for freq, path in tft_paths.items()}

def generate_forecast(model, df):
    forecast_df = model.predict(df=df)
    return forecast_df

def determine_frequency(df):
    df['ds'] = pd.to_datetime(df['ds'])
    df = df.set_index('ds')
    freq = pd.infer_freq(df.index)
    return freq

def plot_forecasts(forecast_df, train_df, title):
    fig, ax = plt.subplots(1, 1, figsize=(20, 7))
    plot_df = pd.concat([train_df, forecast_df]).set_index('ds')
    historical_col = 'y'
    forecast_col = next((col for col in plot_df.columns if 'median' in col), None)
    lo_col = next((col for col in plot_df.columns if 'lo-90' in col), None)
    hi_col = next((col for col in plot_df.columns if 'hi-90' in col), None)
    if forecast_col is None:
        raise KeyError("No forecast column found in the data.")
    plot_df[[historical_col, forecast_col]].plot(ax=ax, linewidth=2, label=['Historical', 'Forecast'])
    if lo_col and hi_col:
        ax.fill_between(
            plot_df.index,
            plot_df[lo_col],
            plot_df[hi_col],
            color='blue',
            alpha=0.3,
            label='90% Confidence Interval'
        )
    ax.set_title(title, fontsize=22)
    ax.set_ylabel('Value', fontsize=20)
    ax.set_xlabel('Timestamp [t]', fontsize=20)
    ax.legend(prop={'size': 15})
    ax.grid()
    st.pyplot(fig)

def select_model_based_on_frequency(freq, nhits_models, timesnet_models, lstm_models, tft_models):
    if freq == 'D':
        return nhits_models['D'], timesnet_models['D'], lstm_models['D'], tft_models['D']
    elif freq == 'M':
        return nhits_models['M'], timesnet_models['M'], lstm_models['M'], tft_models['M']
    elif freq == 'H':
        return nhits_models['H'], timesnet_models['H'], lstm_models['H'], tft_models['H']
    elif freq in ['W', 'W-SUN']:
        return nhits_models['W'], timesnet_models['W'], lstm_models['W'], tft_models['W']
    elif freq in ['Y', 'Y-DEC']:
        return nhits_models['Y'], timesnet_models['Y'], lstm_models['Y'], tft_models['Y']
    else:
        raise ValueError(f"Unsupported frequency: {freq}")

def select_model(horizon, model_type, max_steps=200):
    if model_type == 'NHITS':
        return NHITS(input_size=5 * horizon,
                     h=horizon,
                     max_steps=max_steps,
                     stack_types=3*['identity'],
                     n_blocks=3*[1],
                     mlp_units=[[256, 256] for _ in range(3)],
                     n_pool_kernel_size=3*[1],
                     batch_size=32,
                     scaler_type='standard',
                     n_freq_downsample=[12, 4, 1],
                     loss=HuberMQLoss(level=[90]))
    elif model_type == 'TimesNet':
        return TimesNet(h=horizon,
                        input_size=horizon * 5,
                        hidden_size=16,
                        conv_hidden_size=32,
                        loss=HuberMQLoss(level=[90]),
                        scaler_type='standard',
                        learning_rate=1e-3,
                        max_steps=max_steps,
                        val_check_steps=200,
                        valid_batch_size=64,
                        windows_batch_size=128,
                        inference_windows_batch_size=512)
    elif model_type == 'LSTM':
        return LSTM(h=horizon,
                    input_size=horizon * 5,
                    loss=HuberMQLoss(level=[90]),
                    scaler_type='standard',
                    encoder_n_layers=2,
                    encoder_hidden_size=64,
                    context_size=10,
                    decoder_hidden_size=64,
                    decoder_layers=2,
                    max_steps=max_steps)
    elif model_type == 'TFT':
        return TFT(h=horizon,
                   input_size=horizon,
                   hidden_size=16,
                   loss=HuberMQLoss(level=[90]),
                   learning_rate=0.005,
                   scaler_type='standard',
                   windows_batch_size=128,
                   max_steps=max_steps,
                   val_check_steps=200,
                   valid_batch_size=64,
                   enable_progress_bar=True)
    else:
        raise ValueError(f"Unsupported model type: {model_type}")

def forecast_time_series(df, model_type, freq, horizon, max_steps=200):
    start_time = time.time()  # Start timing
    if freq:
        df['ds'] = pd.date_range(start='1970-01-01', periods=len(df), freq=freq)
    else:
        freq = determine_frequency(df)
        st.write(f"Determined frequency: {freq}")
    df['ds'] = pd.to_datetime(df['ds'], errors='coerce')
    df = df.dropna(subset=['ds'])
    model = select_model(horizon, model_type, max_steps)
    forecast_results = {}
    st.write(f"Generating forecast using {model_type} model...")
    forecast_results[model_type] = generate_forecast(model, df)

    for model_name, forecast_df in forecast_results.items():
        plot_forecasts(forecast_df, df, f'{model_name} Forecast Comparison')
        
    end_time = time.time()  # End timing
    time_taken = end_time - start_time
    st.success(f"Time taken for {model_type} forecast: {time_taken:.2f} seconds")

@st.cache_data
def load_default():
    df = AirPassengersDF.copy()
    return df

def transfer_learning_forecasting():
    st.title("Transfer Learning Forecasting")

    # Upload dataset
    uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
    if uploaded_file:
        df = pd.read_csv(uploaded_file)
    else:
        df = load_default()  

    # Model selection and forecasting
    st.subheader("Model Selection and Forecasting")
    model_choice = st.selectbox("Select model", ["NHITS", "TimesNet", "LSTM", "TFT"])
    horizon = st.number_input("Forecast horizon", value=18)

    # Determine frequency of data
    frequency = determine_frequency(df)
    st.write(f"Detected frequency: {frequency}")

    # Load pre-trained models
    nhits_model, timesnet_model, lstm_model, tft_model = select_model_based_on_frequency(frequency, nhits_models, timesnet_models, lstm_models, tft_models)
    forecast_results = {}

    start_time = time.time()  # Start timing
    if model_choice == "NHITS":
        forecast_results['NHITS'] = generate_forecast(nhits_model, df)
    elif model_choice == "TimesNet":
        forecast_results['TimesNet'] = generate_forecast(timesnet_model, df)
    elif model_choice == "LSTM":
        forecast_results['LSTM'] = generate_forecast(lstm_model, df)
    elif model_choice == "TFT":
        forecast_results['TFT'] = generate_forecast(tft_model, df)

    for model_name, forecast_df in forecast_results.items():
        plot_forecasts(forecast_df, df, f'{model_name} Forecast')

    end_time = time.time()  # End timing
    time_taken = end_time - start_time
    st.success(f"Time taken for {model_choice} forecast: {time_taken:.2f} seconds")

def dynamic_forecasting():
    st.title("Dynamic Forecasting")
    
    # Upload dataset
    uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
    if uploaded_file:
        df = pd.read_csv(uploaded_file)
    else:
        df = load_default()
    
    # Dynamic forecasting
    st.subheader("Dynamic Model Selection and Forecasting")
    dynamic_model_choice = st.selectbox("Select model for dynamic forecasting", ["NHITS", "TimesNet", "LSTM", "TFT"], key="dynamic_model_choice")
    dynamic_horizon = st.number_input("Forecast horizon", value=18)
    
    # Determine frequency of data
    frequency = determine_frequency(df)
    st.write(f"Detected frequency: {frequency}")
    
    forecast_time_series(df, dynamic_model_choice, frequency, dynamic_horizon)
    
# Define the main navigation
pg = st.navigation({
    "Overview": [
        # Load pages from functions
        st.Page(transfer_learning_forecasting, title="Transfer Learning Forecasting", default=True, icon=":material/query_stats:"),
        st.Page(dynamic_forecasting, title="Dynamic Forecasting", icon=":material/monitoring:"),
    ]
})

try:
    pg.run()
except Exception as e:
    st.error(f"Something went wrong: {str(e)}", icon=":material/error:")