Spaces:
Sleeping
Sleeping
File size: 9,732 Bytes
b2108ae e5e340b d511c44 e5e340b c0809e5 e5e340b d511c44 b2108ae e5e340b d511c44 e5e340b b2108ae e5e340b d511c44 e5e340b b2108ae e5e340b d511c44 e5e340b b2108ae e5e340b b2108ae e5e340b d511c44 e5e340b d511c44 90869c2 d511c44 90869c2 d511c44 90869c2 d511c44 90869c2 d511c44 90869c2 d511c44 90869c2 d511c44 90869c2 d511c44 90869c2 d511c44 90869c2 d511c44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import pytorch_lightning as pl
from neuralforecast.core import NeuralForecast
from neuralforecast.models import NHITS, TimesNet, LSTM, TFT
from neuralforecast.losses.pytorch import HuberMQLoss
from neuralforecast.utils import AirPassengersDF
import time
# Paths for saving models
nhits_paths = {
'D': './results/M4/NHITS/daily',
'M': './results/M4/NHITS/monthly',
'H': './results/M4/NHITS/hourly',
'W': './results/M4/NHITS/weekly',
'Y': './results/M4/NHITS/yearly'
}
timesnet_paths = {
'D': './results/M4/TimesNet/daily',
'M': './results/M4/TimesNet/monthly',
'H': './results/M4/TimesNet/hourly',
'W': './results/M4/TimesNet/weekly',
'Y': './results/M4/TimesNet/yearly'
}
lstm_paths = {
'D': './results/M4/LSTM/daily',
'M': './results/M4/LSTM/monthly',
'H': './results/M4/LSTM/hourly',
'W': './results/M4/LSTM/weekly',
'Y': './results/M4/LSTM/yearly'
}
tft_paths = {
'D': './results/M4/TFT/daily',
'M': './results/M4/TFT/monthly',
'H': './results/M4/TFT/hourly',
'W': './results/M4/TFT/weekly',
'Y': './results/M4/TFT/yearly'
}
@st.cache_resource
def load_model(path, freq):
nf = NeuralForecast.load(path=path)
return nf
nhits_models = {freq: load_model(path, freq) for freq, path in nhits_paths.items()}
timesnet_models = {freq: load_model(path, freq) for freq, path in timesnet_paths.items()}
lstm_models = {freq: load_model(path, freq) for freq, path in lstm_paths.items()}
tft_models = {freq: load_model(path, freq) for freq, path in tft_paths.items()}
def generate_forecast(model, df):
forecast_df = model.predict(df=df)
return forecast_df
def determine_frequency(df):
df['ds'] = pd.to_datetime(df['ds'])
df = df.set_index('ds')
freq = pd.infer_freq(df.index)
return freq
def plot_forecasts(forecast_df, train_df, title):
fig, ax = plt.subplots(1, 1, figsize=(20, 7))
plot_df = pd.concat([train_df, forecast_df]).set_index('ds')
historical_col = 'y'
forecast_col = next((col for col in plot_df.columns if 'median' in col), None)
lo_col = next((col for col in plot_df.columns if 'lo-90' in col), None)
hi_col = next((col for col in plot_df.columns if 'hi-90' in col), None)
if forecast_col is None:
raise KeyError("No forecast column found in the data.")
plot_df[[historical_col, forecast_col]].plot(ax=ax, linewidth=2, label=['Historical', 'Forecast'])
if lo_col and hi_col:
ax.fill_between(
plot_df.index,
plot_df[lo_col],
plot_df[hi_col],
color='blue',
alpha=0.3,
label='90% Confidence Interval'
)
ax.set_title(title, fontsize=22)
ax.set_ylabel('Value', fontsize=20)
ax.set_xlabel('Timestamp [t]', fontsize=20)
ax.legend(prop={'size': 15})
ax.grid()
st.pyplot(fig)
def select_model_based_on_frequency(freq, nhits_models, timesnet_models, lstm_models, tft_models):
if freq == 'D':
return nhits_models['D'], timesnet_models['D'], lstm_models['D'], tft_models['D']
elif freq == 'M':
return nhits_models['M'], timesnet_models['M'], lstm_models['M'], tft_models['M']
elif freq == 'H':
return nhits_models['H'], timesnet_models['H'], lstm_models['H'], tft_models['H']
elif freq in ['W', 'W-SUN']:
return nhits_models['W'], timesnet_models['W'], lstm_models['W'], tft_models['W']
elif freq in ['Y', 'Y-DEC']:
return nhits_models['Y'], timesnet_models['Y'], lstm_models['Y'], tft_models['Y']
else:
raise ValueError(f"Unsupported frequency: {freq}")
def select_model(horizon, model_type, max_steps=200):
if model_type == 'NHITS':
return NHITS(input_size=5 * horizon,
h=horizon,
max_steps=max_steps,
stack_types=3*['identity'],
n_blocks=3*[1],
mlp_units=[[256, 256] for _ in range(3)],
n_pool_kernel_size=3*[1],
batch_size=32,
scaler_type='standard',
n_freq_downsample=[12, 4, 1],
loss=HuberMQLoss(level=[90]))
elif model_type == 'TimesNet':
return TimesNet(h=horizon,
input_size=horizon * 5,
hidden_size=16,
conv_hidden_size=32,
loss=HuberMQLoss(level=[90]),
scaler_type='standard',
learning_rate=1e-3,
max_steps=max_steps,
val_check_steps=200,
valid_batch_size=64,
windows_batch_size=128,
inference_windows_batch_size=512)
elif model_type == 'LSTM':
return LSTM(h=horizon,
input_size=horizon * 5,
loss=HuberMQLoss(level=[90]),
scaler_type='standard',
encoder_n_layers=2,
encoder_hidden_size=64,
context_size=10,
decoder_hidden_size=64,
decoder_layers=2,
max_steps=max_steps)
elif model_type == 'TFT':
return TFT(h=horizon,
input_size=horizon,
hidden_size=16,
loss=HuberMQLoss(level=[90]),
learning_rate=0.005,
scaler_type='standard',
windows_batch_size=128,
max_steps=max_steps,
val_check_steps=200,
valid_batch_size=64,
enable_progress_bar=True)
else:
raise ValueError(f"Unsupported model type: {model_type}")
def forecast_time_series(df, model_type, freq, horizon, max_steps=200):
start_time = time.time() # Start timing
if freq:
df['ds'] = pd.date_range(start='1970-01-01', periods=len(df), freq=freq)
else:
freq = determine_frequency(df)
st.write(f"Determined frequency: {freq}")
df['ds'] = pd.to_datetime(df['ds'], errors='coerce')
df = df.dropna(subset=['ds'])
model = select_model(horizon, model_type, max_steps)
forecast_results = {}
st.write(f"Generating forecast using {model_type} model...")
forecast_results[model_type] = generate_forecast(model, df)
for model_name, forecast_df in forecast_results.items():
plot_forecasts(forecast_df, df, f'{model_name} Forecast Comparison')
end_time = time.time() # End timing
time_taken = end_time - start_time
st.success(f"Time taken for {model_type} forecast: {time_taken:.2f} seconds")
@st.cache_data
def load_default():
df = AirPassengersDF.copy()
return df
def transfer_learning_forecasting():
st.title("Transfer Learning Forecasting")
# Upload dataset
uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
if uploaded_file:
df = pd.read_csv(uploaded_file)
else:
df = load_default()
# Model selection and forecasting
st.subheader("Model Selection and Forecasting")
model_choice = st.selectbox("Select model", ["NHITS", "TimesNet", "LSTM", "TFT"])
horizon = st.number_input("Forecast horizon", value=18)
# Determine frequency of data
frequency = determine_frequency(df)
st.write(f"Detected frequency: {frequency}")
# Load pre-trained models
nhits_model, timesnet_model, lstm_model, tft_model = select_model_based_on_frequency(frequency, nhits_models, timesnet_models, lstm_models, tft_models)
forecast_results = {}
start_time = time.time() # Start timing
if model_choice == "NHITS":
forecast_results['NHITS'] = generate_forecast(nhits_model, df)
elif model_choice == "TimesNet":
forecast_results['TimesNet'] = generate_forecast(timesnet_model, df)
elif model_choice == "LSTM":
forecast_results['LSTM'] = generate_forecast(lstm_model, df)
elif model_choice == "TFT":
forecast_results['TFT'] = generate_forecast(tft_model, df)
for model_name, forecast_df in forecast_results.items():
plot_forecasts(forecast_df, df, f'{model_name} Forecast')
end_time = time.time() # End timing
time_taken = end_time - start_time
st.success(f"Time taken for {model_choice} forecast: {time_taken:.2f} seconds")
def dynamic_forecasting():
st.title("Dynamic Forecasting")
# Upload dataset
uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
if uploaded_file:
df = pd.read_csv(uploaded_file)
else:
df = load_default()
# Dynamic forecasting
st.subheader("Dynamic Model Selection and Forecasting")
dynamic_model_choice = st.selectbox("Select model for dynamic forecasting", ["NHITS", "TimesNet", "LSTM", "TFT"], key="dynamic_model_choice")
dynamic_horizon = st.number_input("Forecast horizon", value=18)
# Determine frequency of data
frequency = determine_frequency(df)
st.write(f"Detected frequency: {frequency}")
forecast_time_series(df, dynamic_model_choice, frequency, dynamic_horizon)
# Define the main navigation
pg = st.navigation({
"Overview": [
# Load pages from functions
st.Page(transfer_learning_forecasting, title="Transfer Learning Forecasting", default=True, icon=":material/query_stats:"),
st.Page(dynamic_forecasting, title="Dynamic Forecasting", icon=":material/monitoring:"),
]
})
try:
pg.run()
except Exception as e:
st.error(f"Something went wrong: {str(e)}", icon=":material/error:")
|