azrai99 commited on
Commit
ef2ab0c
·
verified ·
1 Parent(s): 411b7b7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -37
app.py CHANGED
@@ -238,7 +238,7 @@ def transfer_learning_forecasting():
238
  else:
239
  df = st.session_state.df
240
 
241
- columns = st.session_state.df.columns.tolist()
242
  ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
243
  target_columns = [col for col in columns if col != ds_col]
244
  y_col = st.selectbox("Select Target column", options=target_columns, index=0)
@@ -254,7 +254,6 @@ def transfer_learning_forecasting():
254
  df = df.rename(columns={ds_col: 'ds', y_col: 'y'})
255
  df['unique_id']=1
256
  df = df[['unique_id','ds','y']]
257
- st.session_state.df = df
258
 
259
  # Determine frequency of data
260
  frequency = determine_frequency(df)
@@ -340,24 +339,20 @@ def dynamic_forecasting():
340
  df = st.session_state.df
341
  else:
342
  df = st.session_state.df
343
-
344
- columns = df.columns.tolist() # Convert Index to list
345
- opt = []
346
  ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
347
- if 'ds' in columns and 'unique_id' in columns:
348
- columns.pop(columns.index('ds'))
349
- columns.pop(columns.index('unique_id'))
350
- opt = columns
351
- y_col = st.selectbox("Select Target column", options=opt, index=0)
352
 
353
  df = df.rename(columns={ds_col: 'ds', y_col: 'y'})
354
 
355
  df['unique_id']=1
356
  df = df[['unique_id','ds','y']]
357
- st.session_state.df = df
358
 
359
- st.session_state.ds_col = ds_col
360
- st.session_state.y_col = y_col
361
 
362
  # Dynamic forecasting
363
  st.sidebar.subheader("Dynamic Model Selection and Forecasting")
@@ -400,15 +395,11 @@ def timegpt_fcst():
400
  df = st.session_state.df
401
  else:
402
  df = st.session_state.df
403
-
404
- columns = df.columns.tolist() # Convert Index to list
405
- opt = []
406
  ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
407
- if 'ds' in columns and 'unique_id' in columns:
408
- columns.pop(columns.index('ds'))
409
- columns.pop(columns.index('unique_id'))
410
- opt = columns
411
- y_col = st.selectbox("Select Target column", options=opt, index=0)
412
  h = st.number_input("Forecast horizon", value=14)
413
 
414
  df = df.rename(columns={ds_col: 'ds', y_col: 'y'})
@@ -417,10 +408,6 @@ def timegpt_fcst():
417
  id_col = 'ts_test'
418
  df['unique_id']=id_col
419
  df = df[['unique_id','ds','y']]
420
- st.session_state.df = df
421
-
422
- st.session_state.ds_col = ds_col
423
- st.session_state.y_col = y_col
424
 
425
 
426
  freq = determine_frequency(df)
@@ -475,25 +462,17 @@ def timegpt_anom():
475
  df = st.session_state.df
476
  else:
477
  df = st.session_state.df
478
-
479
- columns = df.columns.tolist() # Convert Index to list
480
- opt = []
481
  ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
482
- if 'ds' in columns and 'unique_id' in columns:
483
- columns.pop(columns.index('ds'))
484
- columns.pop(columns.index('unique_id'))
485
- opt = columns
486
- y_col = st.selectbox("Select Target column", options=opt, index=0)
487
 
488
  df = df.rename(columns={ds_col: 'ds', y_col: 'y'})
489
 
490
  id_col = 'ts_test'
491
  df['unique_id']=id_col
492
  df = df[['unique_id','ds','y']]
493
- st.session_state.df = df
494
-
495
- st.session_state.ds_col = ds_col
496
- st.session_state.y_col = y_col
497
 
498
  freq = determine_frequency(df)
499
 
 
238
  else:
239
  df = st.session_state.df
240
 
241
+ columns = df.columns.tolist()
242
  ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
243
  target_columns = [col for col in columns if col != ds_col]
244
  y_col = st.selectbox("Select Target column", options=target_columns, index=0)
 
254
  df = df.rename(columns={ds_col: 'ds', y_col: 'y'})
255
  df['unique_id']=1
256
  df = df[['unique_id','ds','y']]
 
257
 
258
  # Determine frequency of data
259
  frequency = determine_frequency(df)
 
339
  df = st.session_state.df
340
  else:
341
  df = st.session_state.df
342
+
343
+ columns = df.columns.tolist()
 
344
  ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
345
+ target_columns = [col for col in columns if col != ds_col]
346
+ y_col = st.selectbox("Select Target column", options=target_columns, index=0)
347
+
348
+ st.session_state.ds_col = ds_col
349
+ st.session_state.y_col = y_col
350
 
351
  df = df.rename(columns={ds_col: 'ds', y_col: 'y'})
352
 
353
  df['unique_id']=1
354
  df = df[['unique_id','ds','y']]
 
355
 
 
 
356
 
357
  # Dynamic forecasting
358
  st.sidebar.subheader("Dynamic Model Selection and Forecasting")
 
395
  df = st.session_state.df
396
  else:
397
  df = st.session_state.df
398
+
399
+ columns = df.columns.tolist()
 
400
  ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
401
+ target_columns = [col for col in columns if col != ds_col]
402
+ y_col = st.selectbox("Select Target column", options=target_columns, index=0)
 
 
 
403
  h = st.number_input("Forecast horizon", value=14)
404
 
405
  df = df.rename(columns={ds_col: 'ds', y_col: 'y'})
 
408
  id_col = 'ts_test'
409
  df['unique_id']=id_col
410
  df = df[['unique_id','ds','y']]
 
 
 
 
411
 
412
 
413
  freq = determine_frequency(df)
 
462
  df = st.session_state.df
463
  else:
464
  df = st.session_state.df
465
+
466
+ columns = df.columns.tolist()
 
467
  ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
468
+ target_columns = [col for col in columns if col != ds_col]
469
+ y_col = st.selectbox("Select Target column", options=target_columns, index=0)
 
 
 
470
 
471
  df = df.rename(columns={ds_col: 'ds', y_col: 'y'})
472
 
473
  id_col = 'ts_test'
474
  df['unique_id']=id_col
475
  df = df[['unique_id','ds','y']]
 
 
 
 
476
 
477
  freq = determine_frequency(df)
478