Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -238,7 +238,7 @@ def transfer_learning_forecasting():
|
|
238 |
else:
|
239 |
df = st.session_state.df
|
240 |
|
241 |
-
columns =
|
242 |
ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
|
243 |
target_columns = [col for col in columns if col != ds_col]
|
244 |
y_col = st.selectbox("Select Target column", options=target_columns, index=0)
|
@@ -254,7 +254,6 @@ def transfer_learning_forecasting():
|
|
254 |
df = df.rename(columns={ds_col: 'ds', y_col: 'y'})
|
255 |
df['unique_id']=1
|
256 |
df = df[['unique_id','ds','y']]
|
257 |
-
st.session_state.df = df
|
258 |
|
259 |
# Determine frequency of data
|
260 |
frequency = determine_frequency(df)
|
@@ -340,24 +339,20 @@ def dynamic_forecasting():
|
|
340 |
df = st.session_state.df
|
341 |
else:
|
342 |
df = st.session_state.df
|
343 |
-
|
344 |
-
columns = df.columns.tolist()
|
345 |
-
opt = []
|
346 |
ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
|
353 |
df = df.rename(columns={ds_col: 'ds', y_col: 'y'})
|
354 |
|
355 |
df['unique_id']=1
|
356 |
df = df[['unique_id','ds','y']]
|
357 |
-
st.session_state.df = df
|
358 |
|
359 |
-
st.session_state.ds_col = ds_col
|
360 |
-
st.session_state.y_col = y_col
|
361 |
|
362 |
# Dynamic forecasting
|
363 |
st.sidebar.subheader("Dynamic Model Selection and Forecasting")
|
@@ -400,15 +395,11 @@ def timegpt_fcst():
|
|
400 |
df = st.session_state.df
|
401 |
else:
|
402 |
df = st.session_state.df
|
403 |
-
|
404 |
-
columns = df.columns.tolist()
|
405 |
-
opt = []
|
406 |
ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
|
407 |
-
|
408 |
-
|
409 |
-
columns.pop(columns.index('unique_id'))
|
410 |
-
opt = columns
|
411 |
-
y_col = st.selectbox("Select Target column", options=opt, index=0)
|
412 |
h = st.number_input("Forecast horizon", value=14)
|
413 |
|
414 |
df = df.rename(columns={ds_col: 'ds', y_col: 'y'})
|
@@ -417,10 +408,6 @@ def timegpt_fcst():
|
|
417 |
id_col = 'ts_test'
|
418 |
df['unique_id']=id_col
|
419 |
df = df[['unique_id','ds','y']]
|
420 |
-
st.session_state.df = df
|
421 |
-
|
422 |
-
st.session_state.ds_col = ds_col
|
423 |
-
st.session_state.y_col = y_col
|
424 |
|
425 |
|
426 |
freq = determine_frequency(df)
|
@@ -475,25 +462,17 @@ def timegpt_anom():
|
|
475 |
df = st.session_state.df
|
476 |
else:
|
477 |
df = st.session_state.df
|
478 |
-
|
479 |
-
columns = df.columns.tolist()
|
480 |
-
opt = []
|
481 |
ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
|
482 |
-
|
483 |
-
|
484 |
-
columns.pop(columns.index('unique_id'))
|
485 |
-
opt = columns
|
486 |
-
y_col = st.selectbox("Select Target column", options=opt, index=0)
|
487 |
|
488 |
df = df.rename(columns={ds_col: 'ds', y_col: 'y'})
|
489 |
|
490 |
id_col = 'ts_test'
|
491 |
df['unique_id']=id_col
|
492 |
df = df[['unique_id','ds','y']]
|
493 |
-
st.session_state.df = df
|
494 |
-
|
495 |
-
st.session_state.ds_col = ds_col
|
496 |
-
st.session_state.y_col = y_col
|
497 |
|
498 |
freq = determine_frequency(df)
|
499 |
|
|
|
238 |
else:
|
239 |
df = st.session_state.df
|
240 |
|
241 |
+
columns = df.columns.tolist()
|
242 |
ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
|
243 |
target_columns = [col for col in columns if col != ds_col]
|
244 |
y_col = st.selectbox("Select Target column", options=target_columns, index=0)
|
|
|
254 |
df = df.rename(columns={ds_col: 'ds', y_col: 'y'})
|
255 |
df['unique_id']=1
|
256 |
df = df[['unique_id','ds','y']]
|
|
|
257 |
|
258 |
# Determine frequency of data
|
259 |
frequency = determine_frequency(df)
|
|
|
339 |
df = st.session_state.df
|
340 |
else:
|
341 |
df = st.session_state.df
|
342 |
+
|
343 |
+
columns = df.columns.tolist()
|
|
|
344 |
ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
|
345 |
+
target_columns = [col for col in columns if col != ds_col]
|
346 |
+
y_col = st.selectbox("Select Target column", options=target_columns, index=0)
|
347 |
+
|
348 |
+
st.session_state.ds_col = ds_col
|
349 |
+
st.session_state.y_col = y_col
|
350 |
|
351 |
df = df.rename(columns={ds_col: 'ds', y_col: 'y'})
|
352 |
|
353 |
df['unique_id']=1
|
354 |
df = df[['unique_id','ds','y']]
|
|
|
355 |
|
|
|
|
|
356 |
|
357 |
# Dynamic forecasting
|
358 |
st.sidebar.subheader("Dynamic Model Selection and Forecasting")
|
|
|
395 |
df = st.session_state.df
|
396 |
else:
|
397 |
df = st.session_state.df
|
398 |
+
|
399 |
+
columns = df.columns.tolist()
|
|
|
400 |
ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
|
401 |
+
target_columns = [col for col in columns if col != ds_col]
|
402 |
+
y_col = st.selectbox("Select Target column", options=target_columns, index=0)
|
|
|
|
|
|
|
403 |
h = st.number_input("Forecast horizon", value=14)
|
404 |
|
405 |
df = df.rename(columns={ds_col: 'ds', y_col: 'y'})
|
|
|
408 |
id_col = 'ts_test'
|
409 |
df['unique_id']=id_col
|
410 |
df = df[['unique_id','ds','y']]
|
|
|
|
|
|
|
|
|
411 |
|
412 |
|
413 |
freq = determine_frequency(df)
|
|
|
462 |
df = st.session_state.df
|
463 |
else:
|
464 |
df = st.session_state.df
|
465 |
+
|
466 |
+
columns = df.columns.tolist()
|
|
|
467 |
ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
|
468 |
+
target_columns = [col for col in columns if col != ds_col]
|
469 |
+
y_col = st.selectbox("Select Target column", options=target_columns, index=0)
|
|
|
|
|
|
|
470 |
|
471 |
df = df.rename(columns={ds_col: 'ds', y_col: 'y'})
|
472 |
|
473 |
id_col = 'ts_test'
|
474 |
df['unique_id']=id_col
|
475 |
df = df[['unique_id','ds','y']]
|
|
|
|
|
|
|
|
|
476 |
|
477 |
freq = determine_frequency(df)
|
478 |
|