Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import numpy as np | |
MODEL_NAME = "microsoft/Phi-3-mini-4k-instruct" | |
my_token = "h"+"f"+"_"+"yFicBqLnJDUkEIpccOIKpYMecxvPoTiUpG" | |
if __name__ == "__main__": | |
# Define your model and your tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, trust_remote_code=True) # was AutoModelForSeq2SeqLM in case of "google/flan-t5-base" | |
if tokenizer.pad_token_id is None: | |
tokenizer.pad_token_id = tokenizer.eos_token_id | |
model.config.pad_token_id = model.config.eos_token_id | |
# Define your color-coding labels; if prob > x, then label = y; Sorted in descending probability order! | |
probs_to_label = [ | |
(0.9, "p >= 90%"), | |
(0.8, "p >= 80%"), | |
(0.7, "p >= 70%"), | |
(0.6, "p >= 60%"), | |
(0.5, "p >= 50%"), | |
(0.4, "p >= 40%"), | |
(0.3, "p >= 30%"), | |
(0.2, "p >= 20%"), | |
(0.1, "p >= 10%"), | |
(0.0, "p >= 00%") | |
] | |
label_to_color = { | |
"p >= 90%": "#11d9d2", | |
"p >= 80%": "#11b4d9", | |
"p >= 80%": "#11d9a0", | |
"p >= 70%": "#11d954", | |
"p >= 60%": "#4dd911", | |
"p >= 50%": "#a0d911", | |
"p >= 40%": "#d5d911", | |
"p >= 30%": "#d9c111", | |
"p >= 20%": "#d99a11", | |
"p >= 10%": "#d97211", | |
"p >= 00%": "#d91111" | |
} | |
def get_tokens_and_labels(prompt): | |
""" | |
Given the prompt (text), return a list of tuples (decoded_token, label) | |
""" | |
inputs = tokenizer([prompt], return_tensors="pt") | |
outputs = model.generate( | |
**inputs, max_new_tokens=50, return_dict_in_generate=True, output_scores=True | |
) | |
# Important: don't forget to set `normalize_logits=True` to obtain normalized probabilities (i.e. sum(p) = 1) | |
transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, normalize_logits=True) | |
transition_proba = np.exp(transition_scores) | |
# We only have scores for the generated tokens, so pop out the prompt tokens | |
input_length = 1 if model.config.is_encoder_decoder else inputs.input_ids.shape[1] | |
generated_ids = outputs.sequences[:, input_length:] | |
generated_tokens = tokenizer.convert_ids_to_tokens(generated_ids[0]) | |
# Important: you might need to find a tokenization character to replace (e.g. "Δ " for BPE) and get the correct | |
# spacing into the final output πΌ | |
if model.config.is_encoder_decoder: | |
highlighted_out = [] | |
else: | |
input_tokens = tokenizer.convert_ids_to_tokens(inputs.input_ids[0]) | |
highlighted_out = [(token.replace("β", " "), None) for token in input_tokens] | |
# Get the (decoded_token, label) pairs for the generated tokens | |
for token, proba in zip(generated_tokens, transition_proba[0]): | |
this_label = None | |
assert 0. <= proba <= 1.0 | |
for min_proba, label in probs_to_label: | |
if proba >= min_proba: | |
this_label = label | |
break | |
highlighted_out.append((token.replace("β", " "), this_label)) | |
return highlighted_out | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown( | |
""" | |
# π Color-Coded Text Generation π | |
This is a demo of how you can obtain the probabilities of each generated token, and use them to | |
color code the model output. Internally, it relies on | |
[`compute_transition_scores`](https://huggingface.co/docs/transformers/main/en/main_classes/text_generation#transformers.GenerationMixin.compute_transition_scores), | |
which was added in `transformers` v4.26.0. | |
β οΈ For instance, with the pre-populated input and its color-coded output, you can see that | |
`google/flan-t5-base` struggles with arithmetics. | |
π€ Feel free to clone this demo and modify it to your needs π€ | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox( | |
label="Prompt", | |
lines=3, | |
value=( | |
"Answer the following question by reasoning step-by-step. The cafeteria had 23 apples. " | |
"If they used 20 for lunch and bought 6 more, how many apples do they have?" | |
), | |
) | |
button = gr.Button(f"Generate with {MODEL_NAME}") | |
with gr.Column(): | |
highlighted_text = gr.HighlightedText( | |
label="Highlighted generation", | |
combine_adjacent=True, | |
show_legend=True, | |
).style(color_map=label_to_color) | |
button.click(get_tokens_and_labels, inputs=prompt, outputs=highlighted_text) | |
if __name__ == "__main__": | |
demo.launch() |