File size: 6,877 Bytes
36ad38b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
426d4b0
36ad38b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
426d4b0
36ad38b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
426d4b0
36ad38b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
426d4b0
36ad38b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import torch
from IPython.display import Audio
from audiodiffusion import AudioDiffusion, AudioDiffusionPipeline
from audiodiffusion.audio_encoder import AudioEncoder
import librosa
import librosa.display
import numpy as np
import random 

device = "cuda" if torch.cuda.is_available() else "cpu"
model_name = ["SAint7579/orpheus_ldm_model_v1-0", "teticio/audio-diffusion-ddim-256"]

audio_diffusion_v0 = AudioDiffusionPipeline.from_pretrained("teticio/latent-audio-diffusion-256").to(device)
audio_diffusion_v1 = AudioDiffusionPipeline.from_pretrained("SAint7579/orpheus_ldm_model_v1-0").to(device)
ddim = AudioDiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256").to(device)

### Add numpy docstring to generate_from_music
def generate_from_music(song_array, diffuser, start_step, total_steps=100, device=device):
    """
    Generates audio from a given song array using a given diffuser.
    Parameters
    ----------
    song_array : numpy.ndarray
        The song array to use as the raw audio.
    diffuser : AudioDiffusionPipeline
        The diffuser to use to generate the audio.
    start_step : int
        The step to start generating from.
    total_steps : int
        The total number of steps to generate.
    device : str
        The device to use for generation.
    Returns
    -------
    numpy.ndarray
        The generated audio.
    """
    generator = torch.Generator(device=device)
    generator.seed()
    output = diffuser(raw_audio=song_array, generator = generator, start_step=start_step, steps=total_steps)
    return output.images[0], output.audios[0, 0]

def generate_from_music_long(song_array, diffuser, start_step, total_steps=100, device=device):
    """
    Generates a 10 second audio from a given song array using a given diffuser.
    Parameters
    ----------
    song_array : numpy.ndarray
        The song array to use as the raw audio.
    diffuser : AudioDiffusionPipeline
        The diffuser to use to generate the audio.
    start_step : int
        The step to start generating from.
    total_steps : int
        The total number of steps to generate.
    device : str
        The device to use for generation.
    Returns
    -------
    numpy.ndarray
        The generated audio.
    """
    generator = torch.Generator(device=device)
    generator.seed()
    output = diffuser(raw_audio=song_array, generator = generator, start_step=start_step, steps=total_steps)

    # Get the track and use the diffuser again to create the continuation
    track = output.audios[0, 0]
    sample_rate = diffuser.mel.get_sample_rate()
    overlap_secs = 2
    overlap_samples = overlap_secs * sample_rate

    continue_output = diffuser(raw_audio=track[-overlap_samples:],
                               generator=generator,
                               start_step=start_step,
                               mask_start_secs=overlap_secs)
    # image2 = output.images[0]
    audio2 = continue_output.audios[0, 0]
    track = np.concatenate([track, audio2[overlap_samples:]])

    return output.images[0], track


## Add docstring to iterative_slerp function in numpy format
def iterative_slerp(song_arrays, ddim, steps=10):
    """Iterative slerp function.

    Parameters
    ----------
    song_arrays : list
        List of song arrays to slerp.
    ddim : AudioDiffusion ddim model
        AudioDiffusion object.

    Returns
    -------
    slerp : torch.Tensor
        Slerped tensor.
    """
    noise = []
    for arr in song_arrays:
        ddim.mel.audio = arr
        noise.append(ddim.encode([ddim.mel.audio_slice_to_image(0)], steps=steps))

    slerp = noise[0]
    for i in range(1, len(noise)):
        slerp = ddim.slerp(slerp, noise[i], 0.5)

    return slerp

def merge_songs(song_arrays, ddim, slerp_steps=10, diffusion_steps=100, device=device):
    """Merge songs.

    Parameters
    ----------
    song_arrays : list
        List of song arrays to merge.
    ddim : AudioDiffusion ddim model
        AudioDiffusion object.

    Returns
    -------
    spectrogram : np.ndarray
        Merged spectrogram.
    audio : np.ndarray
        Merged audio.
    """
    generator = torch.Generator(device=device)
    generator.manual_seed(7579)
    slerp = iterative_slerp(song_arrays, ddim, slerp_steps)
    merged = ddim(noise=slerp, generator=generator, steps=diffusion_steps)
    return merged.images[0], merged.audios[0, 0]

## Write generate songs function with numpy docstring
def generate_songs(conditioning_songs, similarity=0.9, quality=500, merging_quality=100, device=device):
    """Generate songs.

    Parameters
    ----------
    conditioning_songs : list
        List of conditioning songs.
    similarity : float
        Similarity between conditioning songs.
    quality : int
        Quality of generated song.

    Returns
    -------
    spec_generated : np.ndarray
        Spectrogram of generated song.
    generated : np.ndarray
        Generated song.
    """
    ## Merging songs
    print("Merging songs...")
    if len(conditioning_songs)>1:
        # print(conditioning_songs)
        # for c in conditioning_songs:
        #     print(len(c))
        spec_merged, merged = merge_songs(conditioning_songs, ddim, slerp_steps=merging_quality, diffusion_steps=merging_quality, device=device)
    else:
        merged = conditioning_songs[0]

    ## Take a random 10 second slice from the merged song
    # sample_rate = ddim.mel.get_sample_rate()
    # start = np.random.randint(0, len(merged) - 5 * sample_rate)
    # merged = merged[start:start + 5 * sample_rate]

    if random.random() < 0.5:
        diffuser = audio_diffusion_v0
        model_name = "v0"
    else:
        diffuser = audio_diffusion_v1
        model_name = "v1"
    print("Generating song...")
    ## quality = X - similarity*X
    total_steps = min([1000, int(quality/(1-similarity))])
    start_step = int(total_steps*similarity)
    spec_generated, generated = generate_from_music(merged, diffuser, start_step=start_step, total_steps=total_steps, device=device)

    return spec_generated, generated, model_name

# if __name__ == '__main__':
#     song1 = "D:/Projects/Orpheus_ai/DataSet/Sep_Dataset/accompaniment/000010.mp3"
#     song2 = "D:/Projects/Orpheus_ai/DataSet/Sep_Dataset/accompaniment/000002.mp3"
#     song3 = "D:/Projects/Orpheus_ai/DataSet/Sep_Dataset/accompaniment/000003.mp3"

#     song_array_1, sr = librosa.load(song1, sr=22050)
#     song_array_1 = song_array_1[:sr*5]

#     song_array_2, sr = librosa.load(song2, sr=22050)
#     song_array_2 = song_array_2[:sr*10]

#     song_array_3, sr = librosa.load(song3, sr=22050)
#     song_array_3 = song_array_3[:sr*10]

#     generator = torch.Generator(device=device)

#     # seed = 239150437427
#     image, audio = generate_songs([song_array_2, song_array_3], similarity=0.5, quality=10, device=device)
#     Audio(audio, rate=sr)