|
from diffusers import AutoencoderKL, UNet2DConditionModel, StableDiffusionPipeline
|
|
from transformers import CLIPTextModel, CLIPTokenizer
|
|
|
|
def load_models(pretrained_model_name_or_path):
|
|
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name_or_path, subfolder="text_encoder")
|
|
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae")
|
|
unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder="unet")
|
|
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer")
|
|
return text_encoder, vae, unet, tokenizer
|
|
|