SEMS / app.py
prathampatel1's picture
Upload 2 files
e329747 verified
import streamlit as st
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import plotly.express as px
import plotly.graph_objects as go
from sklearn.ensemble import IsolationForest
from sklearn.linear_model import LinearRegression
import random
import calendar
# Set random seed for reproducibility
np.random.seed(42)
def generate_device_data(num_days=90, device_type="home"):
"""Generate synthetic energy consumption data for devices with enhanced patterns"""
dates = pd.date_range(end=datetime.now(), periods=num_days*24, freq='h')
if device_type == "home":
devices = {
'HVAC': {'base': 8, 'var': 4, 'peak_hours': [14, 15, 16, 17], 'weekend_factor': 1.2},
'Refrigerator': {'base': 2, 'var': 0.5, 'peak_hours': [12, 13, 14], 'weekend_factor': 1.0},
'Washing Machine': {'base': 1, 'var': 0.8, 'peak_hours': [10, 19, 20], 'weekend_factor': 1.5},
'Lighting': {'base': 1.5, 'var': 0.3, 'peak_hours': [18, 19, 20, 21], 'weekend_factor': 1.1},
'Television': {'base': 0.5, 'var': 0.2, 'peak_hours': [20, 21, 22], 'weekend_factor': 1.3}
}
else:
devices = {
'HVAC System': {'base': 20, 'var': 8, 'peak_hours': [14, 15, 16, 17], 'weekend_factor': 0.6},
'Server Room': {'base': 15, 'var': 3, 'peak_hours': [12, 13, 14], 'weekend_factor': 0.9},
'Office Equipment': {'base': 10, 'var': 4, 'peak_hours': [9, 10, 11, 14, 15], 'weekend_factor': 0.4},
'Lighting': {'base': 8, 'var': 2, 'peak_hours': [9, 10, 11, 14, 15], 'weekend_factor': 0.5},
'Kitchen Appliances': {'base': 5, 'var': 2, 'peak_hours': [12, 13], 'weekend_factor': 0.3}
}
data = []
for date in dates:
hour = date.hour
is_weekend = date.weekday() >= 5
for device, params in devices.items():
# Add seasonal variation
seasonal_factor = 1 + 0.3 * np.sin(2 * np.pi * date.dayofyear / 365)
# Add peak hour variation
peak_factor = 1.5 if hour in params['peak_hours'] else 1
# Add weekend variation
weekend_factor = params['weekend_factor'] if is_weekend else 1
# Base consumption with random variation
consumption = (params['base'] * seasonal_factor * peak_factor * weekend_factor +
np.random.normal(0, params['var']))
# Add some anomalies (3% chance)
if np.random.random() < 0.03:
consumption *= np.random.choice([1.5, 2.0, 0.5])
data.append({
'Date': date,
'Device': device,
'Consumption': max(0, consumption),
'Hour': hour,
'Weekday': date.strftime('%A'),
'Weekend': is_weekend
})
return pd.DataFrame(data)
def detect_anomalies(df):
"""Enhanced anomaly detection using Isolation Forest with multiple features"""
iso_forest = IsolationForest(contamination=0.03, random_state=42)
by_device = df.groupby('Device')
anomalies = []
for device, group in by_device:
# Use multiple features for anomaly detection
features = group[['Consumption', 'Hour']].copy()
features['Weekend'] = group['Weekend'].astype(int)
predictions = iso_forest.fit_predict(features)
anomaly_indices = predictions == -1
anomaly_data = group[anomaly_indices]
for _, row in anomaly_data.iterrows():
anomalies.append({
'Device': device,
'Date': row['Date'],
'Consumption': row['Consumption'],
'Hour': row['Hour'],
'Weekday': row['Weekday']
})
return pd.DataFrame(anomalies)
def generate_insights(df):
"""Generate detailed insights from the energy consumption data"""
insights = []
# Peak usage analysis
peak_hours = df.groupby(['Device', 'Hour'])['Consumption'].mean().reset_index()
for device in df['Device'].unique():
device_peaks = peak_hours[peak_hours['Device'] == device].nlargest(3, 'Consumption')
insights.append({
'Type': 'Peak Hours',
'Device': device,
'Description': f"Peak usage hours: {', '.join(map(str, device_peaks['Hour']))}",
'Impact': 'High'
})
# Weekend vs Weekday analysis
weekend_comparison = df.groupby(['Device', 'Weekend'])['Consumption'].mean().unstack()
for device in weekend_comparison.index:
diff_pct = ((weekend_comparison.loc[device, True] - weekend_comparison.loc[device, False]) /
weekend_comparison.loc[device, False] * 100)
insights.append({
'Type': 'Weekend Pattern',
'Device': device,
'Description': f"{'Higher' if diff_pct > 0 else 'Lower'} weekend usage by {abs(diff_pct):.1f}%",
'Impact': 'Medium' if abs(diff_pct) < 20 else 'High'
})
return pd.DataFrame(insights)
def predict_consumption(df, days_ahead=30):
"""Predict future consumption using linear regression with multiple features"""
predictions = []
for device in df['Device'].unique():
device_data = df[df['Device'] == device].copy()
# Create features for prediction
device_data['Day_of_Week'] = device_data['Date'].dt.dayofweek
device_data['Month'] = device_data['Date'].dt.month
device_data['Day_of_Year'] = device_data['Date'].dt.dayofyear
X = device_data[['Hour', 'Day_of_Week', 'Month', 'Day_of_Year']]
y = device_data['Consumption']
model = LinearRegression()
model.fit(X, y)
# Generate future dates
future_dates = pd.date_range(
start=df['Date'].max() + timedelta(hours=1),
periods=days_ahead*24,
freq='h'
)
future_X = pd.DataFrame({
'Hour': future_dates.hour,
'Day_of_Week': future_dates.dayofweek,
'Month': future_dates.month,
'Day_of_Year': future_dates.dayofyear
})
future_predictions = model.predict(future_X)
for date, pred in zip(future_dates, future_predictions):
predictions.append({
'Date': date,
'Device': device,
'Predicted_Consumption': max(0, pred)
})
return pd.DataFrame(predictions)
# Streamlit UI
st.set_page_config(page_title="SEMS - Smart Energy Management System", layout="wide", initial_sidebar_state="expanded")
# Custom CSS
st.markdown("""
<style>
.main {
padding: 2rem;
}
.stMetric {
background-color: #f0f2f6;
padding: 1rem;
border-radius: 0.5rem;
}
.insight-card {
background-color: #ffffff;
padding: 1rem;
border-radius: 0.5rem;
margin: 0.5rem 0;
border: 1px solid #e0e0e0;
}
</style>
""", unsafe_allow_html=True)
st.title("🏢 SEMS - Smart Energy Management System")
# Sidebar configuration
st.sidebar.title("Configuration")
user_type = st.sidebar.radio("Select User Type", ["Home", "Organization"])
analysis_period = st.sidebar.slider("Analysis Period (Days)", 30, 180, 90)
# Generate data
data = generate_device_data(num_days=analysis_period, device_type=user_type.lower())
# Main tabs
tab1, tab2, tab3, tab4 = st.tabs([
"📊 Usage Dashboard",
"🔍 Detailed Analysis",
"⚠️ Peak Usage Detection",
"📈 Forecasting"
])
with tab1:
st.header("Energy Usage Dashboard")
# Key metrics
col1, col2, col3 = st.columns(3)
total_consumption = data['Consumption'].sum()
avg_daily = data.groupby(data['Date'].dt.date)['Consumption'].sum().mean()
peak_hour = data.groupby('Hour')['Consumption'].mean().idxmax()
col1.metric("Total Consumption", f"{total_consumption:.1f} kWh")
col2.metric("Average Daily Usage", f"{avg_daily:.1f} kWh")
col3.metric("Peak Usage Hour", f"{peak_hour}:00")
# Daily consumption trend
st.subheader("Daily Consumption Trend")
daily_consumption = data.groupby(['Date', 'Device'])['Consumption'].sum().reset_index()
fig = px.line(daily_consumption, x='Date', y='Consumption', color='Device',
title='Energy Consumption Over Time')
fig.update_layout(height=400)
st.plotly_chart(fig, use_container_width=True)
# Device-wise distribution
col1, col2 = st.columns(2)
with col1:
device_total = data.groupby('Device')['Consumption'].sum().sort_values(ascending=True)
fig = px.bar(device_total, orientation='h',
title='Total Consumption by Device')
st.plotly_chart(fig, use_container_width=True)
with col2:
hourly_avg = data.groupby(['Hour', 'Device'])['Consumption'].mean().reset_index()
fig = px.line(hourly_avg, x='Hour', y='Consumption', color='Device',
title='Average Hourly Consumption Pattern')
st.plotly_chart(fig, use_container_width=True)
with tab2:
st.header("Detailed Analysis")
# Weekday vs Weekend analysis
st.subheader("Weekday vs Weekend Consumption")
weekly_pattern = data.groupby(['Weekday', 'Device'])['Consumption'].mean().reset_index()
fig = px.bar(weekly_pattern, x='Weekday', y='Consumption', color='Device',
title='Average Consumption by Day of Week')
st.plotly_chart(fig, use_container_width=True)
# Hourly heatmap
st.subheader("Hourly Consumption Heatmap")
hourly_data = data.pivot_table(
values='Consumption',
index='Hour',
columns='Weekday',
aggfunc='mean'
)
fig = px.imshow(hourly_data,
labels=dict(x="Day of Week", y="Hour of Day", color="Consumption"),
aspect="auto",
title="Consumption Intensity by Hour and Day")
st.plotly_chart(fig, use_container_width=True)
# Display insights
st.subheader("Key Insights")
insights = generate_insights(data)
for _, insight in insights.iterrows():
with st.expander(f"{insight['Device']} - {insight['Type']} (Impact: {insight['Impact']})"):
st.write(insight['Description'])
with tab3:
st.header("Peak Usage Detection")
# Detect anomalies
anomalies = detect_anomalies(data)
if not anomalies.empty:
st.warning(f"Detected {len(anomalies)} anomalies in energy consumption")
# Plot with anomalies
fig = go.Figure()
for device in data['Device'].unique():
device_data = data[data['Device'] == device]
device_anomalies = anomalies[anomalies['Device'] == device]
fig.add_trace(go.Scatter(
x=device_data['Date'],
y=device_data['Consumption'],
name=f"{device} (normal)",
mode='lines'
))
if not device_anomalies.empty:
fig.add_trace(go.Scatter(
x=device_anomalies['Date'],
y=device_anomalies['Consumption'],
name=f"{device} (anomaly)",
mode='markers',
marker=dict(size=10, symbol='x', color='red')
))
fig.update_layout(
title='Energy Consumption with Detected Anomalies',
height=500
)
st.plotly_chart(fig, use_container_width=True)
# Anomaly details in an expandable table
st.subheader("Peak Usage Details")
for device in anomalies['Device'].unique():
device_anomalies = anomalies[anomalies['Device'] == device].copy()
device_anomalies['Date'] = device_anomalies['Date'].dt.strftime('%Y-%m-%d %H:%M')
with st.expander(f"Anomalies for {device}"):
st.dataframe(
device_anomalies[['Date', 'Consumption', 'Hour', 'Weekday']],
use_container_width=True
)
with tab4:
st.header("Consumption Forecasting")
# Generate predictions
predictions = predict_consumption(data)
# Plot historical data and predictions
st.subheader("Consumption Forecast")
for device in predictions['Device'].unique():
with st.expander(f"Forecast for {device}"):
historical = data[data['Device'] == device]
device_predictions = predictions[predictions['Device'] == device]
fig = go.Figure()
# Historical data
fig.add_trace(go.Scatter(
x=historical['Date'],
y=historical['Consumption'],
name='Historical',
line=dict(color='blue')
))
# Predictions
fig.add_trace(go.Scatter(
x=device_predictions['Date'],
y=device_predictions['Predicted_Consumption'],
name='Forecast',
line=dict(color='red', dash='dash')
))
fig.update_layout(
title=f'Energy Consumption Forecast - {device}',
xaxis_title='Date',
yaxis_title='Consumption (kWh)',
height=400
)
st.plotly_chart(fig, use_container_width=True)
# Summary statistics
col1, col2, col3 = st.columns(3)
avg_historical = historical['Consumption'].mean()
avg_predicted = device_predictions['Predicted_Consumption'].mean()
change_pct = (avg_predicted - avg_historical) / avg_historical * 100
col1.metric(
"Average Historical Usage",
f"{avg_historical:.2f} kWh"
)
col2.metric(
"Average Predicted Usage",
f"{avg_predicted:.2f} kWh"
)
col3.metric(
"Expected Change",
f"{change_pct:+.1f}%",
delta_color="inverse"
)
# Additional insights section
st.subheader("Energy Saving Opportunities")
# Calculate potential savings based on patterns
def calculate_savings_opportunities(historical_data, predictions_data):
opportunities = []
# Check for peak hour reduction potential
peak_hours = historical_data.groupby('Hour')['Consumption'].mean()
top_peak_hours = peak_hours.nlargest(3)
potential_peak_savings = top_peak_hours.sum() * 0.2 # Assume 20% reduction possible
opportunities.append({
'Type': 'Peak Hour Reduction',
'Description': f'Reduce usage during peak hours ({", ".join(map(str, top_peak_hours.index))}:00)',
'Potential_Savings': f'{potential_peak_savings:.2f} kWh per day'
})
# Check for weekend optimization
weekend_data = historical_data[historical_data['Weekend']]
weekday_data = historical_data[~historical_data['Weekend']]
if weekend_data['Consumption'].mean() > weekday_data['Consumption'].mean():
weekend_savings = (weekend_data['Consumption'].mean() - weekday_data['Consumption'].mean()) * 2
opportunities.append({
'Type': 'Weekend Optimization',
'Description': 'Optimize weekend consumption patterns',
'Potential_Savings': f'{weekend_savings:.2f} kWh per weekend'
})
# Seasonal optimization
seasonal_data = historical_data.copy()
seasonal_data['Month'] = seasonal_data['Date'].dt.month
monthly_avg = seasonal_data.groupby('Month')['Consumption'].mean()
seasonal_variation = monthly_avg.max() - monthly_avg.min()
if seasonal_variation > monthly_avg.mean() * 0.3: # If variation is more than 30%
opportunities.append({
'Type': 'Seasonal Optimization',
'Description': 'Implement seasonal usage strategies',
'Potential_Savings': f'{seasonal_variation:.2f} kWh per month'
})
return pd.DataFrame(opportunities)
savings_opportunities = calculate_savings_opportunities(data, predictions)
for _, opportunity in savings_opportunities.iterrows():
with st.expander(f"💡 {opportunity['Type']}"):
st.write(f"**Description:** {opportunity['Description']}")
st.write(f"**Potential Savings:** {opportunity['Potential_Savings']}")
# Add specific recommendations based on opportunity type
if opportunity['Type'] == 'Peak Hour Reduction':
st.write("""
**Recommendations:**
- Schedule high-energy activities during off-peak hours
- Use automated controls to limit non-essential usage during peak times
- Consider energy storage solutions for peak shifting
""")
elif opportunity['Type'] == 'Weekend Optimization':
st.write("""
**Recommendations:**
- Review weekend device scheduling
- Implement automatic shutdown for unused equipment
- Optimize temperature settings for unoccupied periods
""")
elif opportunity['Type'] == 'Seasonal Optimization':
st.write("""
**Recommendations:**
- Adjust HVAC settings seasonally
- Implement weather-based control strategies
- Schedule maintenance during shoulder seasons
""")
# Add export functionality
if st.sidebar.button("Export Analysis Report"):
# Create report dataframe
report_data = {
'Metric': [
'Total Consumption',
'Average Daily Usage',
'Peak Usage Hour',
'Number of Anomalies',
'Forecast Trend'
],
'Value': [
f"{total_consumption:.1f} kWh",
f"{avg_daily:.1f} kWh",
f"{peak_hour}:00",
len(anomalies),
f"{change_pct:+.1f}% (30-day forecast)"
]
}
report_df = pd.DataFrame(report_data)
# Convert to CSV
csv = report_df.to_csv(index=False)
st.sidebar.download_button(
label="Download Report",
data=csv,
file_name="energy_analysis_report.csv",
mime="text/csv"
)
# Add help section in sidebar
with st.sidebar.expander("ℹ️ Help"):
st.write("""
**Using the Dashboard:**
1. Select your user type (Home/Organization)
2. Adjust the analysis period using the slider
3. Navigate through tabs to view different analyses
4. Use expanders to see detailed information
5. Export your analysis report using the button above
For additional support, contact our team at [email protected]
""")
# Add system status
st.sidebar.markdown("---")
st.sidebar.markdown("### System Status")
st.sidebar.markdown("✅ All Systems Operational")
st.sidebar.markdown(f"Last Updated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")