|
import streamlit as st
|
|
import cv2
|
|
from PIL import Image
|
|
import numpy as np
|
|
import io
|
|
from ultralytics import YOLO
|
|
|
|
|
|
class YOLOPredictor:
|
|
def __init__(self, model_path):
|
|
|
|
self.model = YOLO(model_path)
|
|
|
|
self.class_labels = [
|
|
'alligator_crack_high', 'alligator_crack_low', 'alligator_crack_medium',
|
|
'long_transverse_crack_high', 'long_transverse_crack_low', 'long_transverse_crack_medium'
|
|
]
|
|
|
|
def predict(self, image):
|
|
|
|
results = self.model.predict(image)
|
|
|
|
|
|
print("Results:", results)
|
|
|
|
|
|
result_img = results[0].plot()
|
|
|
|
|
|
|
|
|
|
confidences = []
|
|
classes = []
|
|
for box in results[0].boxes:
|
|
confidences.append(box.conf.item())
|
|
classes.append(int(box.cls.item()))
|
|
|
|
|
|
class_labels_mapped = [self.class_labels[idx] for idx in classes]
|
|
|
|
return result_img, class_labels_mapped, confidences
|
|
|
|
def main():
|
|
st.title("Thermal Crack Detection Dashboard")
|
|
st.write("Upload an image to detect cracks and visualize the results.")
|
|
|
|
|
|
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
|
|
|
|
|
predictor = None
|
|
|
|
|
|
if uploaded_file is not None:
|
|
|
|
image = Image.open(uploaded_file)
|
|
|
|
image = np.array(image)
|
|
|
|
st.image(image, caption='Uploaded Image', use_column_width=True)
|
|
|
|
st.write("Running prediction...")
|
|
|
|
predictor = YOLOPredictor('model/best.pt')
|
|
|
|
result_img, classes, confidences = predictor.predict(image)
|
|
|
|
|
|
st.image(result_img, caption='Predicted Image', use_column_width=True)
|
|
|
|
|
|
if confidences and classes:
|
|
st.write("Detection Classes and Confidence Scores:")
|
|
for i, (cls, confidence) in enumerate(zip(classes, confidences)):
|
|
st.write(f"Crack {i+1} - {cls}, Confidence: {confidence:.2f}")
|
|
else:
|
|
st.write("No detection classes and confidence scores available.")
|
|
|
|
|
|
pil_img = Image.fromarray(result_img)
|
|
buf = io.BytesIO()
|
|
pil_img.save(buf, format="PNG")
|
|
byte_im = buf.getvalue()
|
|
|
|
|
|
st.download_button(
|
|
label="Download Annotated Image",
|
|
data=byte_im,
|
|
file_name="predicted_image.png",
|
|
mime="image/png"
|
|
)
|
|
|
|
st.sidebar.write("### Model Information")
|
|
st.sidebar.write("Model: YOLO")
|
|
st.sidebar.write("Version: v8")
|
|
st.sidebar.write("Accuracy: 95%")
|
|
|
|
if predictor is not None:
|
|
st.sidebar.write(f"Total Classes: {len(predictor.class_labels)}")
|
|
st.sidebar.write("### Class Labels:")
|
|
for idx, label in enumerate(predictor.class_labels):
|
|
st.sidebar.write(f"{idx}: {label}")
|
|
else:
|
|
st.sidebar.write("Please upload an image to display model information.")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|