File size: 15,579 Bytes
304227c
 
 
 
 
 
 
 
 
 
c558e5e
304227c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30a5039
 
ed4644b
 
03261c8
c558e5e
 
 
304227c
 
 
 
 
 
 
 
b952eb2
304227c
b952eb2
 
304227c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3331389
304227c
 
3331389
304227c
 
 
 
 
 
 
3331389
304227c
d7bcf16
304227c
 
 
 
 
 
 
 
 
 
 
 
 
4f7cecf
7d01b03
7089906
4f7cecf
7d01b03
 
 
681acf9
7d01b03
 
 
56e3500
30c6ca6
 
 
681acf9
30c6ca6
681acf9
30c6ca6
 
 
56e3500
4f7cecf
 
 
 
 
7d01b03
681acf9
9221c91
681acf9
 
 
 
 
4f7cecf
 
 
 
 
 
 
7d01b03
 
4f7cecf
7089906
30c6ca6
7089906
 
 
304227c
7d01b03
aac742b
681acf9
 
8923528
681acf9
7d01b03
 
681acf9
 
 
 
9221c91
681acf9
 
7d01b03
7089906
30c6ca6
56e3500
681acf9
56e3500
681acf9
 
9842be4
681acf9
56e3500
681acf9
74dc002
7d01b03
74dc002
d5e9f89
7089906
30c6ca6
7d01b03
4f7cecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d01b03
 
30c6ca6
4f7cecf
 
 
 
 
7d01b03
7089906
30c6ca6
7089906
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74dc002
4f7cecf
 
 
 
 
 
 
 
 
 
 
 
681acf9
4f7cecf
304227c
 
 
 
 
 
 
 
b952eb2
304227c
 
3331389
 
 
304227c
 
561b6c3
3331389
 
eb36747
e69ee39
 
 
 
 
 
 
eb36747
 
e69ee39
 
304227c
 
eb36747
304227c
 
 
 
3331389
45b4425
2db28ae
 
 
3331389
2db28ae
 
 
03261c8
c558e5e
 
2db28ae
304227c
 
c2dc7f3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import os
import json
import re
from huggingface_hub import InferenceClient
import gradio as gr
from pydantic import BaseModel, Field
from typing import Optional, Literal

class PromptInput(BaseModel):
    text: str = Field(..., description="The initial prompt text")
    meta_prompt_choice: Literal["star","done","physics","morphosis", "verse", "phor","bolism","math","arpe"] = Field(..., description="Choice of meta prompt strategy")

class RefinementOutput(BaseModel):
    query_analysis: Optional[str] = None
    initial_prompt_evaluation: Optional[str] = None
    refined_prompt: Optional[str] = None
    explanation_of_refinements: Optional[str] = None
    raw_content: Optional[str] = None

class PromptRefiner:
    def __init__(self, api_token: str):
        self.client = InferenceClient(token=api_token)

    def refine_prompt(self, prompt_input: PromptInput) -> RefinementOutput:
        if prompt_input.meta_prompt_choice == "morphosis":
            selected_meta_prompt = original_meta_prompt
        elif prompt_input.meta_prompt_choice == "verse":
            selected_meta_prompt = new_meta_prompt
        elif prompt_input.meta_prompt_choice == "physics":
            selected_meta_prompt = metaprompt1
        elif prompt_input.meta_prompt_choice == "bolism":
            selected_meta_prompt = loic_metaprompt
        elif prompt_input.meta_prompt_choice == "done":
            selected_meta_prompt = metadone
        elif prompt_input.meta_prompt_choice == "star":
            selected_meta_prompt = echo_prompt_refiner
        elif prompt_input.meta_prompt_choice == "math":
            selected_meta_prompt = math_meta_prompt  
        elif prompt_input.meta_prompt_choice == "arpe":
            selected_meta_prompt = autoregressive_metaprompt
        else:
            selected_meta_prompt = advanced_meta_prompt
    
        messages = [
            {"role": "system", "content": 'You are an expert at refining and extending prompts. Given a basic prompt, provide a more detailed.'},
            {"role": "user", "content": selected_meta_prompt.replace("[Insert initial prompt here]", prompt_input.text)}
        ]
        response = self.client.chat_completion(
            model=prompt_refiner_model,
            messages=messages,
            max_tokens=2000,
            temperature=0.8
        )
        response_content = response.choices[0].message.content.strip()
        try:
            json_match = re.search(r'<json>\s*(.*?)\s*</json>', response_content, re.DOTALL)
            if json_match:
                json_str = json_match.group(1)
                json_str = re.sub(r'\n\s*', ' ', json_str)
                json_str = json_str.replace('"', '\\"')
                json_output = json.loads(f'"{json_str}"')
                if isinstance(json_output, str):
                    json_output = json.loads(json_output)
                for key, value in json_output.items():
                    if isinstance(value, str):
                        json_output[key] = value.replace('\\"', '"')
                return RefinementOutput(**json_output, raw_content=response_content)
            else:
                raise ValueError("No JSON found in the response")
        except (json.JSONDecodeError, ValueError) as e:
            print(f"Error parsing JSON: {e}")
            print(f"Raw content: {response_content}")
            output = {}
            for key in ["initial_prompt_evaluation", "refined_prompt", "explanation_of_refinements"]:
                pattern = rf'"{key}":\s*"(.*?)"(?:,|\}})'
                match = re.search(pattern, response_content, re.DOTALL)
                if match:
                    output[key] = match.group(1).replace('\\n', '\n').replace('\\"', '"')
                else:
                    output[key] = ""
            return RefinementOutput(**output, raw_content=response_content)
                
    def apply_prompt(self, prompt: str, model: str) -> str:
        try:
            messages = [
                {"role": "system", "content": "You are a helpful assistant. Answer in stylized version with latex format or markdown if relevant. Separate your answer into logical sections using level 2 headers (##) for sections and bolding (**) for subsections.Incorporate a variety of lists, headers, and text to make the answer visually appealing"},
                {"role": "user", "content": prompt}
            ]

            response = self.client.chat_completion(
                model=model,
                messages=messages,
                max_tokens=2000,
                temperature=0.8
            )

            output = response.choices[0].message.content.strip()
            output = output.replace('\n\n', '\n').strip()
            return output
        except Exception as e:
            return f"Error: {str(e)}"

class GradioInterface:
    def __init__(self, prompt_refiner: PromptRefiner):
        self.prompt_refiner = prompt_refiner

        # Define custom CSS for containers
        custom_css = """
        .container {
            border: 2px solid #2196F3;
            border-radius: 10px;
            padding: 20px;
            margin: 15px;
            background: white;
            position: relative;
        }
        
        .container::before {
            position: absolute;
            top: -12px;
            left: 20px;
            background: white;
            padding: 0 10px;
            color: #2196F3;
            font-weight: bold;
            font-size: 1.2em;
        }

        /* Remove default Gradio styles */
        .no-background > div:first-child {
            border: none !important;
            background: transparent !important;
            box-shadow: none !important;
        }

        .title-container::before { content: ''; }
        .input-container::before { content: 'PROMPT REFINEMENT'; }
        .analysis-container::before { content: 'ANALYSIS & REFINEMENT'; }
        .model-container::before { content: 'MODEL APPLICATION'; }
        .results-container::before { content: 'RESULTS'; }
        .examples-container::before { content: 'EXAMPLES'; }

        /* Custom styling for radio buttons */
        .radio-group {
            display: flex;
            gap: 10px;
            margin: 10px 0;
        }
        """

        with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as self.interface:
            # Title Container
            with gr.Column(elem_classes=["container", "title-container"]):
                gr.Markdown("# PROMPT++")
                gr.Markdown("### Automating Prompt Engineering by Refining your Prompts")
                gr.Markdown("Learn how to generate an improved version of your prompts. Enter a main idea for a prompt, choose a meta prompt, and the model will attempt to generate an improved version.")

            # Input Container
            with gr.Column(elem_classes=["input-container"]):
                prompt_text = gr.Textbox(
                    label="Type the prompt (or let it empty to see metaprompt)",
                    elem_classes="no-background"
                )
                with gr.Accordion("Meta Prompt explanation", open=False):
                    gr.Markdown(explanation_markdown)
                meta_prompt_choice = gr.Radio(
                    ["star","done","physics","morphosis", "verse", "phor","bolism","math","arpe"],
                    label="Choose Meta Prompt",
                    value="star",
                  #  elem_classes=["no-background", "radio-group"]
                )
                refine_button = gr.Button("Refine Prompt")

            # Analysis Container
            with gr.Column(elem_classes=["container", "analysis-container"]):
                gr.Markdown("### Initial prompt analysis")
                analysis_evaluation = gr.Markdown()
                gr.Markdown("### Refined Prompt")
                refined_prompt = gr.Textbox(
                    interactive=False,
                    elem_classes="no-background"
                )
                gr.Markdown("### Explanation of Refinements")
                explanation_of_refinements = gr.Markdown()
            
            with gr.Accordion("Full Response JSON", open=False, visible=False):
                full_response_json = gr.JSON()

            # Model Application Container
            with gr.Column(elem_classes=["container", "model-container"]):
                gr.Markdown("## See MetaPrompt Impact")            
                with gr.Row():
                    apply_model = gr.Dropdown(
                        [
                            "Qwen/Qwen2.5-72B-Instruct",
                            "meta-llama/Meta-Llama-3-70B-Instruct",
                            "meta-llama/Llama-3.1-8B-Instruct",
                            "NousResearch/Hermes-3-Llama-3.1-8B",
                            "HuggingFaceH4/zephyr-7b-alpha",
                            "meta-llama/Llama-2-7b-chat-hf",
                            "microsoft/Phi-3.5-mini-instruct"
                        ],
                        value="meta-llama/Meta-Llama-3-70B-Instruct",
                        label="Choose the Model to apply to the prompts (the one you will used)",
                        elem_classes="no-background"
                    )
                    apply_button = gr.Button("Apply MetaPrompt")

            # Results Container
            with gr.Column(elem_classes=["container", "results-container"]):
                with gr.Tabs():
                    with gr.TabItem("Original Prompt Output"):
                        original_output = gr.Markdown()
                    with gr.TabItem("Refined Prompt Output"):
                        refined_output = gr.Markdown()

            # Examples Container
            with gr.Column(elem_classes=["container", "examples-container"]):
                with gr.Accordion("Examples", open=True):
                    gr.Examples(
                        examples=[
                            ["Write a story on the end of prompt engineering replaced by an Ai specialized in refining prompts.", "star"],
                            ["Tell me about that guy who invented the light bulb", "physics"],
                            ["Explain the universe.", "star"],
                            ["What's the population of New York City and how tall is the Empire State Building and who was the first mayor?", "morphosis"],
                            ["List American presidents.", "verse"],                        
                            ["Explain why the experiment failed.", "morphosis"],
                            ["Is nuclear energy good?", "verse"],
                            ["How does a computer work?", "phor"],
                            ["How to make money fast?", "done"],
                            ["how can you  prove IT0's lemma in stochastic calculus ?", "arpe"],                    
                        ],
                        inputs=[prompt_text, meta_prompt_choice]
                    )

            # Connect the buttons to their functions
            refine_button.click(
                fn=self.refine_prompt,
                inputs=[prompt_text, meta_prompt_choice],
                outputs=[analysis_evaluation, refined_prompt, explanation_of_refinements, full_response_json]
            )

            apply_button.click(
                fn=self.apply_prompts,
                inputs=[prompt_text, refined_prompt, apply_model],
                outputs=[original_output, refined_output]
            )

    # Your existing methods remain the same
    def refine_prompt(self, prompt: str, meta_prompt_choice: str) -> tuple:
        input_data = PromptInput(text=prompt, meta_prompt_choice=meta_prompt_choice)
        result = self.prompt_refiner.refine_prompt(input_data)
        analysis_evaluation = f"\n\n{result.initial_prompt_evaluation}"
        return (
            analysis_evaluation,
            result.refined_prompt,
            result.explanation_of_refinements,
            result.dict()
        )

    def apply_prompts(self, original_prompt: str, refined_prompt: str, model: str):
        original_output = self.prompt_refiner.apply_prompt(original_prompt, model)
        refined_output = self.prompt_refiner.apply_prompt(refined_prompt, model)
        return original_output, refined_output

    def launch(self, share=False):
        self.interface.launch(share=share)

metaprompt_explanations = {
    "star": "Use ECHO when you need a comprehensive, multi-stage approach for complex prompts. It's ideal for tasks requiring in-depth analysis, exploration of multiple alternatives, and synthesis of ideas. Choose this over others when you have time for a thorough refinement process and need to consider various aspects of the prompt.",
    "done": "Opt for this when you want a structured approach with emphasis on role-playing and advanced techniques. It's particularly useful for tasks that benefit from diverse perspectives and complex reasoning. Prefer this over 'physics' when you need a more detailed, step-by-step refinement process.",
    "physics": "Select this when you need a balance between structure and advanced techniques, with a focus on role-playing. It's similar to 'done' but may be more suitable for scientific or technical prompts. Choose this over 'done' for a slightly less complex approach.",
    "morphosis": "Use this simplified approach for straightforward prompts or when time is limited. It focuses on essential improvements without complex techniques. Prefer this over other methods when you need quick, clear refinements without extensive analysis.",
    "verse": "Choose this method when you need to analyze and improve a prompt's strengths and weaknesses, with a focus on information flow. It's particularly useful for enhancing the logical structure of prompts. Use this over 'morphosis' when you need more depth but less complexity than 'star'.",
    "phor": "Employ this advanced approach when you need to combine multiple prompt engineering techniques. It's ideal for complex tasks requiring both clarity and sophisticated prompting methods. Select this over 'star' when you want a more flexible, technique-focused approach.",
    "bolism": "Utilize this method when working with autoregressive language models and when the task requires careful reasoning before conclusions. It's best for prompts that need detailed output formatting. Choose this over others when the prompt's structure and reasoning order are crucial."
}

explanation_markdown = "".join([f"- **{key}**: {value}\n" for key, value in metaprompt_explanations.items()])

# Main code to run the application
if __name__ == '__main__':
    meta_info=""
    api_token = os.getenv('HF_API_TOKEN')
    if not api_token:
        raise ValueError("HF_API_TOKEN not found in environment variables")

    metadone = os.getenv('metadone')
    prompt_refiner_model = os.getenv('prompt_refiner_model')
    echo_prompt_refiner = os.getenv('echo_prompt_refiner')
    metaprompt1 = os.getenv('metaprompt1')   
    loic_metaprompt = os.getenv('loic_metaprompt')    
    openai_metaprompt = os.getenv('openai_metaprompt')
    original_meta_prompt = os.getenv('original_meta_prompt')    
    new_meta_prompt = os.getenv('new_meta_prompt')   
    advanced_meta_prompt = os.getenv('advanced_meta_prompt')
    math_meta_prompt = os.getenv('metamath')
    autoregressive_metaprompt = os.getenv('autoregressive_metaprompt')


    prompt_refiner = PromptRefiner(api_token)
    gradio_interface = GradioInterface(prompt_refiner)
    gradio_interface.launch(share=True)