File size: 6,175 Bytes
ad8d809
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
import json
import uuid
import numpy as np
from datetime import datetime
from flask import Flask, request, jsonify, send_from_directory
from flask_cors import CORS
from werkzeug.utils import secure_filename
import google.generativeai as genai
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from transformers import pipeline
import faiss
import markdown

# Configuration
GEMINI_API_KEY = (
    "AIzaSyBbb8rH6ksakMg_v2W6hvUNzgHDI3lxWk0"  # Replace with your actual API key
)
genai.configure(api_key=GEMINI_API_KEY)

# Initialize Flask app
app = Flask(__name__, static_folder="../frontend", static_url_path="")
CORS(app)

# RAG Model Initialization
print("πŸš€ Initializing RAG System...")

# Load medical guidelines dataset
print("πŸ“‚ Loading dataset...")
dataset = load_dataset("epfl-llm/guidelines", split="train")
TITLE_COL = "title"
CONTENT_COL = "clean_text"

# Initialize models
print("πŸ€– Loading AI models...")
embedder = SentenceTransformer("all-MiniLM-L6-v2")
qa_pipeline = pipeline(
    "question-answering", model="distilbert-base-cased-distilled-squad"
)

# Build FAISS index
print("πŸ” Building FAISS index...")


def embed_text(batch):
    combined_texts = [
        f"{title} {content[:200]}"
        for title, content in zip(batch[TITLE_COL], batch[CONTENT_COL])
    ]
    return {"embeddings": embedder.encode(combined_texts, show_progress_bar=False)}


dataset = dataset.map(embed_text, batched=True, batch_size=32)
dataset.add_faiss_index(column="embeddings")


# Processing Functions
def format_response(text):
    """Convert Markdown text to HTML for proper frontend display."""
    return markdown.markdown(text)


def summarize_report(report):
    """Generate a clinical summary using QA and Gemini model."""
    questions = [
        "Patient's age?",
        "Patient's gender?",
        "Current symptoms?",
        "Medical history?",
    ]

    answers = []
    for q in questions:
        result = qa_pipeline(question=q, context=report)
        answers.append(result["answer"] if result["score"] > 0.1 else "Not specified")

    model = genai.GenerativeModel("gemini-1.5-flash")
    prompt = f"""Create clinical summary from:
    - Age: {answers[0]}
    - Gender: {answers[1]}
    - Symptoms: {answers[2]}
    - History: {answers[3]}
    
    Format: "[Age] [Gender] with [History], presenting with [Symptoms]"
    Add relevant medical context."""
    summary = model.generate_content(prompt).text.strip()
    print(f"Generated Summary: {summary}")  # Debugging log
    return format_response(summary)


def rag_retrieval(query, k=3):
    """Retrieve relevant guidelines using FAISS."""
    query_embedding = embedder.encode([query])
    scores, examples = dataset.get_nearest_examples("embeddings", query_embedding, k=k)
    return [
        {
            "title": title,
            "content": content[:1000],
            "source": examples.get("source", ["N/A"] * len(examples[TITLE_COL]))[i],
            "score": float(score),
        }
        for i, (title, content, score) in enumerate(
            zip(examples[TITLE_COL], examples[CONTENT_COL], scores)
        )
    ]


def generate_recommendations(report):
    """Generate treatment recommendations with RAG context."""
    guidelines = rag_retrieval(report)
    context = "Relevant Clinical Guidelines:\n" + "\n".join(
        [f"β€’ {g['title']}: {g['content']} [Source: {g['source']}]" for g in guidelines]
    )

    model = genai.GenerativeModel("gemini-1.5-flash")
    prompt = f"""Generate treatment recommendations using these guidelines:
    {context}
    
    Patient Presentation:
    {report}
    
    Format with:
    - Bold section headers
    - Clear bullet points
    - Evidence markers [Guideline #]
    - Risk-benefit analysis
    - Include references to the sources provided where applicable
    """
    recommendations = model.generate_content(prompt).text.strip()
    references = [g["source"] for g in guidelines if g["source"] != "N/A"]
    return format_response(recommendations), references


def generate_risk_assessment(summary):
    """Generate risk assessment using the summary."""
    model = genai.GenerativeModel("gemini-1.5-flash")
    prompt = f"""Analyze clinical risk:
    {summary}
    
    Output format:
    Risk Score: 0-100
    Alert Level: πŸ”΄ High/🟑 Medium/🟒 Low
    Key Risk Factors: bullet points
    Recommended Actions: bullet points"""
    return format_response(model.generate_content(prompt).text.strip())


# Flask Endpoints
@app.route("/upload-txt", methods=["POST"])
def handle_upload():
    """Handle text file upload and return processed data."""
    if "file" not in request.files:
        return jsonify({"error": "No file provided"}), 400

    file = request.files["file"]
    if not file or not file.filename.endswith(".txt"):
        return jsonify({"error": "Invalid file, must be a .txt file"}), 400

    try:
        content = file.read().decode("utf-8")
        if not content.strip():
            return jsonify({"error": "File is empty"}), 400

        summary = summarize_report(content)
        recommendations, references = generate_recommendations(content)
        risk_assessment = generate_risk_assessment(summary)

        response = {
            "session_id": str(uuid.uuid4()),
            "timestamp": datetime.now().isoformat(),
            "summary": summary,
            "recommendations": recommendations,
            "risk_assessment": risk_assessment,
            "references": references,
        }
        print(
            f"Response Sent to Frontend: {json.dumps(response, indent=2)}"
        )  # Debugging log
        return jsonify(response)
    except Exception as e:
        return jsonify({"error": f"Processing failed: {str(e)}"}), 500


@app.route("/")
def serve_index():
    """Serve the index.html file."""
    return send_from_directory(app.static_folder, "index.html")


@app.route("/<path:path>")
def serve_static(path):
    """Serve other static files from the frontend directory."""
    return send_from_directory(app.static_folder, path)


if __name__ == "__main__":
    app.run(host="0.0.0.0", port=5000, debug=True)