flask-ml-deploy / app.py
badal-12's picture
Create app.py
ad8d809 verified
raw
history blame
6.18 kB
import os
import json
import uuid
import numpy as np
from datetime import datetime
from flask import Flask, request, jsonify, send_from_directory
from flask_cors import CORS
from werkzeug.utils import secure_filename
import google.generativeai as genai
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from transformers import pipeline
import faiss
import markdown
# Configuration
GEMINI_API_KEY = (
"AIzaSyBbb8rH6ksakMg_v2W6hvUNzgHDI3lxWk0" # Replace with your actual API key
)
genai.configure(api_key=GEMINI_API_KEY)
# Initialize Flask app
app = Flask(__name__, static_folder="../frontend", static_url_path="")
CORS(app)
# RAG Model Initialization
print("πŸš€ Initializing RAG System...")
# Load medical guidelines dataset
print("πŸ“‚ Loading dataset...")
dataset = load_dataset("epfl-llm/guidelines", split="train")
TITLE_COL = "title"
CONTENT_COL = "clean_text"
# Initialize models
print("πŸ€– Loading AI models...")
embedder = SentenceTransformer("all-MiniLM-L6-v2")
qa_pipeline = pipeline(
"question-answering", model="distilbert-base-cased-distilled-squad"
)
# Build FAISS index
print("πŸ” Building FAISS index...")
def embed_text(batch):
combined_texts = [
f"{title} {content[:200]}"
for title, content in zip(batch[TITLE_COL], batch[CONTENT_COL])
]
return {"embeddings": embedder.encode(combined_texts, show_progress_bar=False)}
dataset = dataset.map(embed_text, batched=True, batch_size=32)
dataset.add_faiss_index(column="embeddings")
# Processing Functions
def format_response(text):
"""Convert Markdown text to HTML for proper frontend display."""
return markdown.markdown(text)
def summarize_report(report):
"""Generate a clinical summary using QA and Gemini model."""
questions = [
"Patient's age?",
"Patient's gender?",
"Current symptoms?",
"Medical history?",
]
answers = []
for q in questions:
result = qa_pipeline(question=q, context=report)
answers.append(result["answer"] if result["score"] > 0.1 else "Not specified")
model = genai.GenerativeModel("gemini-1.5-flash")
prompt = f"""Create clinical summary from:
- Age: {answers[0]}
- Gender: {answers[1]}
- Symptoms: {answers[2]}
- History: {answers[3]}
Format: "[Age] [Gender] with [History], presenting with [Symptoms]"
Add relevant medical context."""
summary = model.generate_content(prompt).text.strip()
print(f"Generated Summary: {summary}") # Debugging log
return format_response(summary)
def rag_retrieval(query, k=3):
"""Retrieve relevant guidelines using FAISS."""
query_embedding = embedder.encode([query])
scores, examples = dataset.get_nearest_examples("embeddings", query_embedding, k=k)
return [
{
"title": title,
"content": content[:1000],
"source": examples.get("source", ["N/A"] * len(examples[TITLE_COL]))[i],
"score": float(score),
}
for i, (title, content, score) in enumerate(
zip(examples[TITLE_COL], examples[CONTENT_COL], scores)
)
]
def generate_recommendations(report):
"""Generate treatment recommendations with RAG context."""
guidelines = rag_retrieval(report)
context = "Relevant Clinical Guidelines:\n" + "\n".join(
[f"β€’ {g['title']}: {g['content']} [Source: {g['source']}]" for g in guidelines]
)
model = genai.GenerativeModel("gemini-1.5-flash")
prompt = f"""Generate treatment recommendations using these guidelines:
{context}
Patient Presentation:
{report}
Format with:
- Bold section headers
- Clear bullet points
- Evidence markers [Guideline #]
- Risk-benefit analysis
- Include references to the sources provided where applicable
"""
recommendations = model.generate_content(prompt).text.strip()
references = [g["source"] for g in guidelines if g["source"] != "N/A"]
return format_response(recommendations), references
def generate_risk_assessment(summary):
"""Generate risk assessment using the summary."""
model = genai.GenerativeModel("gemini-1.5-flash")
prompt = f"""Analyze clinical risk:
{summary}
Output format:
Risk Score: 0-100
Alert Level: πŸ”΄ High/🟑 Medium/🟒 Low
Key Risk Factors: bullet points
Recommended Actions: bullet points"""
return format_response(model.generate_content(prompt).text.strip())
# Flask Endpoints
@app.route("/upload-txt", methods=["POST"])
def handle_upload():
"""Handle text file upload and return processed data."""
if "file" not in request.files:
return jsonify({"error": "No file provided"}), 400
file = request.files["file"]
if not file or not file.filename.endswith(".txt"):
return jsonify({"error": "Invalid file, must be a .txt file"}), 400
try:
content = file.read().decode("utf-8")
if not content.strip():
return jsonify({"error": "File is empty"}), 400
summary = summarize_report(content)
recommendations, references = generate_recommendations(content)
risk_assessment = generate_risk_assessment(summary)
response = {
"session_id": str(uuid.uuid4()),
"timestamp": datetime.now().isoformat(),
"summary": summary,
"recommendations": recommendations,
"risk_assessment": risk_assessment,
"references": references,
}
print(
f"Response Sent to Frontend: {json.dumps(response, indent=2)}"
) # Debugging log
return jsonify(response)
except Exception as e:
return jsonify({"error": f"Processing failed: {str(e)}"}), 500
@app.route("/")
def serve_index():
"""Serve the index.html file."""
return send_from_directory(app.static_folder, "index.html")
@app.route("/<path:path>")
def serve_static(path):
"""Serve other static files from the frontend directory."""
return send_from_directory(app.static_folder, path)
if __name__ == "__main__":
app.run(host="0.0.0.0", port=5000, debug=True)