File size: 24,209 Bytes
d9991d4
9d74996
 
 
 
 
 
 
d9991d4
 
9d74996
 
 
 
 
 
 
4d0481d
9d74996
 
 
 
 
 
 
 
 
 
 
 
 
412554a
 
 
 
 
148979f
9d74996
148979f
2013bf3
148979f
9d74996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38dec67
9d74996
 
 
 
148979f
9d74996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38dec67
9d74996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17a1863
9d74996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d6b74d
9d74996
 
7d6b74d
 
4d0481d
7d6b74d
 
 
 
 
 
 
 
 
 
4d0481d
9d74996
 
 
 
 
 
 
 
b41e98c
9d74996
b41e98c
 
 
 
9d74996
b30d21d
9d74996
2285967
 
2013bf3
 
 
 
a22a57f
 
4d0481d
f0f354e
 
4d0481d
abefd07
 
 
 
 
 
4d0481d
 
 
 
430d29a
4d0481d
430d29a
 
4d0481d
 
 
 
d34de96
430d29a
d34de96
f0f354e
4a3718d
24a0f48
f0f354e
abefd07
 
 
 
b0883d9
abefd07
f0f354e
9f4e146
 
ef6b1b7
9d74996
 
584ce5d
9d74996
 
 
 
 
 
d9991d4
ef6b1b7
9d74996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2013bf3
6db93f3
4a3718d
15d7f87
 
 
 
 
 
 
 
9d74996
a23e792
9d74996
 
 
 
 
 
 
 
 
 
 
 
ef6b1b7
9d74996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2013bf3
9d74996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
584ce5d
38dec67
ca15a3d
ef6b1b7
 
9d74996
 
 
c950476
0a8cc6f
ca15a3d
c950476
 
9d74996
 
 
 
892cc76
9d74996
 
 
 
 
 
 
 
 
 
d9991d4
9d74996
 
 
 
 
 
 
 
 
148979f
 
9d74996
 
 
 
d9991d4
 
148979f
ef6b1b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d74996
 
 
 
 
 
 
 
148979f
9d74996
 
a22a57f
50648c9
9d74996
ef6b1b7
9d74996
 
 
 
 
 
 
 
 
2013bf3
9d74996
 
 
 
 
 
796079a
9d74996
 
 
 
a22a57f
 
3fd7f45
a22a57f
 
 
9d74996
 
 
796079a
9d74996
 
 
 
 
 
796079a
 
9d74996
 
 
 
 
 
 
796079a
9d74996
 
 
 
 
 
796079a
 
9d74996
 
 
 
 
 
 
 
 
ef6b1b7
 
 
 
 
 
 
 
 
9d74996
ef6b1b7
9d74996
 
 
 
 
ef6b1b7
9d74996
ef6b1b7
9d74996
 
 
 
 
a22a57f
9d74996
ef6b1b7
9d74996
 
 
 
 
 
 
 
 
2013bf3
9d74996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c950476
 
9d74996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef6b1b7
9d74996
 
 
a22a57f
9d74996
 
 
 
 
 
 
 
 
 
 
 
 
 
ef6b1b7
9d74996
 
 
a22a57f
9d74996
 
 
 
 
 
 
 
 
 
 
 
ef6b1b7
9d74996
 
 
a22a57f
9d74996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
148979f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
import spaces
import argparse
from ast import parse
import datetime
import json
import os
import time
import hashlib
import re
import torch
import gradio as gr
import requests
import random
from filelock import FileLock
from io import BytesIO
from PIL import Image, ImageDraw, ImageFont
from models import load_image
from constants import LOGDIR, DEFAULT_IMAGE_TOKEN
from utils import (
    build_logger,
    server_error_msg,
    violates_moderation,
    moderation_msg,
    load_image_from_base64,
    get_log_filename,
)
from threading import Thread
import traceback
# import torch
from conversation import Conversation
from transformers import AutoModel, AutoTokenizer, TextIteratorStreamer
import subprocess

subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

torch.set_default_device('cuda')

logger = build_logger("gradio_web_server", "gradio_web_server.log")

headers = {"User-Agent": "Vintern-1B-3.5-Demo Client"}

no_change_btn = gr.Button()
enable_btn = gr.Button(interactive=True)
disable_btn = gr.Button(interactive=False)


@spaces.GPU(duration=10)
def make_zerogpu_happy():
    pass


def write2file(path, content):
    lock = FileLock(f"{path}.lock")
    with lock:
        with open(path, "a") as fout:
            fout.write(content)


get_window_url_params = """
function() {
    const params = new URLSearchParams(window.location.search);
    url_params = Object.fromEntries(params);
    console.log(url_params);
    return url_params;
    }
"""


def init_state(state=None):
    if state is not None:
        del state
    return Conversation()

def vote_last_response(state, liked, request: gr.Request):
    conv_data = {
        "tstamp": round(time.time(), 4),
        "like": liked,
        "model": 'Vintern-1B-v3_5',
        "state": state.dict(),
        "ip": request.client.host,
    }
    write2file(get_log_filename(), json.dumps(conv_data) + "\n")


def upvote_last_response(state, request: gr.Request):
    logger.info(f"upvote. ip: {request.client.host}")
    vote_last_response(state, True, request)
    textbox = gr.MultimodalTextbox(value=None, interactive=True)
    return (textbox,) + (disable_btn,) * 3


def downvote_last_response(state, request: gr.Request):
    logger.info(f"downvote. ip: {request.client.host}")
    vote_last_response(state, False, request)
    textbox = gr.MultimodalTextbox(value=None, interactive=True)
    return (textbox,) + (disable_btn,) * 3


def vote_selected_response(
    state, request: gr.Request, data: gr.LikeData
):
    logger.info(
        f"Vote: {data.liked}, index: {data.index}, value: {data.value} , ip: {request.client.host}"
    )
    conv_data = {
        "tstamp": round(time.time(), 4),
        "like": data.liked,
        "index": data.index,
        "model": 'Vintern-1B-v3_5',
        "state": state.dict(),
        "ip": request.client.host,
    }
    write2file(get_log_filename(), json.dumps(conv_data) + "\n")
    return


def flag_last_response(state, request: gr.Request):
    logger.info(f"flag. ip: {request.client.host}")
    vote_last_response(state, "flag", request)
    textbox = gr.MultimodalTextbox(value=None, interactive=True)
    return (textbox,) + (disable_btn,) * 3


def regenerate(state, image_process_mode, request: gr.Request):
    logger.info(f"regenerate. ip: {request.client.host}")
    # state.messages[-1][-1] = None
    state.update_message(Conversation.ASSISTANT, content='', image=None, idx=-1)
    prev_human_msg = state.messages[-2]
    if type(prev_human_msg[1]) in (tuple, list):
        prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
    state.skip_next = False
    textbox = gr.MultimodalTextbox(value=None, interactive=True)
    return (state, state.to_gradio_chatbot(), textbox) + (disable_btn,) * 5


def clear_history(request: gr.Request):
    logger.info(f"clear_history. ip: {request.client.host}")
    state = init_state()
    textbox = gr.MultimodalTextbox(value=None, interactive=True)
    return (state, state.to_gradio_chatbot(), textbox) + (disable_btn,) * 5


def add_text(state, message, system_prompt, request: gr.Request):
    if not state:
        state = init_state()
    images = message.get("files", [])
    text = message.get("text", "").strip()
    # logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}")
    # import pdb; pdb.set_trace()
    textbox = gr.MultimodalTextbox(value=None, interactive=False)
    if len(text) <= 0 and len(images) == 0:
        state.skip_next = True
        return (state, state.to_gradio_chatbot(), textbox) + (no_change_btn,) * 5
    if args.moderate:
        flagged = violates_moderation(text)
        if flagged:
            state.skip_next = True
            textbox = gr.MultimodalTextbox(
                value={"text": moderation_msg}, interactive=True
            )
            return (state, state.to_gradio_chatbot(), textbox) + (no_change_btn,) * 5
    images = [Image.open(path).convert("RGB") for path in images]

    # Init again if send the second image
    if len(images) > 0 and len(state.get_images(source=state.USER)) > 0:
        state = init_state(state)

    # Upload the first image
    if len(images) > 0 and len(state.get_images(source=state.USER)) == 0:
        if len(state.messages) == 0: ## In case the first message is an image
            text = DEFAULT_IMAGE_TOKEN + "\n" + system_prompt + "\n" + text
        else: ## In case the image is uploaded after some text messages
           first_user_message = state.messages[0]['content']
           state.update_message(Conversation.USER, DEFAULT_IMAGE_TOKEN + "\n" + first_user_message, None, 0)

    # If the first message is text
    if len(images) == 0 and len(state.get_images(source=state.USER)) == 0 and len(state.messages) == 0:
        text = system_prompt + "\n" + text


    state.set_system_message(system_prompt)
    state.append_message(Conversation.USER, text, images)
    state.skip_next = False
    return (state, state.to_gradio_chatbot(), textbox) + (
        disable_btn,
    ) * 5

model_name = "5CD-AI/Vintern-1B-v3_5"
model = AutoModel.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True,
).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False)

@spaces.GPU
def predict(state,
            image_path,
            max_input_tiles=6, 
            temperature=1.0,
            max_output_tokens=700,
            top_p=0.7,
            repetition_penalty=2.5,
            do_sample=False):
        
        # history = state.get_prompt()[:-1]
        # logger.info(f"==== History ====\n{history}")

        generation_config = dict(temperature=temperature,
                                 max_new_tokens=max_output_tokens, 
                                 top_p=top_p, 
                                 do_sample=do_sample, 
                                 num_beams = 3, 
                                 repetition_penalty=repetition_penalty)

        pixel_values = None
        if image_path is not None:
            pixel_values = load_image(image_path, max_num=max_input_tiles).to(torch.bfloat16).cuda()
            
            if pixel_values is not None:
                logger.info(f"==== Lenght Pixel values ====\n{len(pixel_values)}")

               # Check the first user message to see if it is an image
                index, first_user_message = state.get_user_message(source=state.USER, position='first')
                if first_user_message is not None and \
                    DEFAULT_IMAGE_TOKEN not in first_user_message:
                    state.update_message(state.USER, DEFAULT_IMAGE_TOKEN + "\n" + first_user_message, None, index)

        history = state.get_history()
        logger.info(f"====  History ====\n{history}")
        _, message = state.get_user_message(source=state.USER, position='last')

        
        response, conv_history = model.chat(tokenizer, 
                                            pixel_values, 
                                            message, 
                                            generation_config, 
                                            history=history,
                                            return_history=True)
        logger.info(f"==== Conv History ====\n{conv_history}")
        return response, conv_history

def ai_bot(
    state,
    temperature,
    do_sample,
    top_p,
    repetition_penalty,
    max_new_tokens,
    max_input_tiles,
    request: gr.Request,
):
    
    logger.info(f"ai_bot. ip: {request.client.host}")
    start_tstamp = time.time()
    if hasattr(state, "skip_next") and state.skip_next:
        # This generate call is skipped due to invalid inputs
        yield (
            state,
            state.to_gradio_chatbot(),
            gr.MultimodalTextbox(interactive=False),
        ) + (no_change_btn,) * 5
        return

    if model is None:
        state.update_message(Conversation.ASSISTANT, server_error_msg)
        yield (
            state,
            state.to_gradio_chatbot(),
            gr.MultimodalTextbox(interactive=False),
            disable_btn,
            disable_btn,
            disable_btn,
            enable_btn,
            enable_btn,
        )
        return

    all_images = state.get_images(source=state.USER)
    all_image_paths = [state.save_image(image) for image in all_images]

    state.append_message(Conversation.ASSISTANT, state.streaming_placeholder)
    yield (
        state,
        state.to_gradio_chatbot(),
        gr.MultimodalTextbox(interactive=False),
    ) + (disable_btn,) * 5

    try:
        # Stream output
        logger.info(f"==== Image paths ====\n{all_image_paths}")


        response, _ = predict(state,
                            all_image_paths[0] if len(all_image_paths) > 0 else None,
                            max_input_tiles, 
                            temperature, 
                            max_new_tokens,
                            top_p, 
                            repetition_penalty,
                            do_sample)

        # response = "This is a test response"
        buffer = ""
        for new_text in response:
            buffer += new_text
                
            state.update_message(Conversation.ASSISTANT, buffer + state.streaming_placeholder, None)
            yield (
                state,
                state.to_gradio_chatbot(),
                gr.MultimodalTextbox(interactive=False),
            ) + (disable_btn,) * 5

    except Exception as e:
        logger.error(f"Error in ai_bot: {e} \n{traceback.format_exc()}")
        state.update_message(Conversation.ASSISTANT, server_error_msg, None)
        yield (
            state,
            state.to_gradio_chatbot(),
            gr.MultimodalTextbox(interactive=True),
        ) + (
            disable_btn,
            disable_btn,
            disable_btn,
            enable_btn,
            enable_btn,
        )
        return

    ai_response = state.return_last_message()

    logger.info(f"==== AI response ====\n{ai_response}")
   
    state.end_of_current_turn()

    yield (
        state,
        state.to_gradio_chatbot(),
        gr.MultimodalTextbox(interactive=True),
    ) + (enable_btn,) * 5

    finish_tstamp = time.time()
    logger.info(f"{buffer}")
    data = {
        "tstamp": round(finish_tstamp, 4),
        "like": None,
        "model": model_name,
        "start": round(start_tstamp, 4),
        "finish": round(start_tstamp, 4),
        "state": state.dict(),
        "images": all_image_paths,
        "ip": request.client.host,
    }
    write2file(get_log_filename(), json.dumps(data) + "\n")

# <h1 style="font-size: 28px; font-weight: bold;">Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling</h1>
title_html = """
<div style="text-align: center;">
    <img src="https://cdn-uploads.huggingface.co/production/uploads/6336b5c831efcb5647f00170/-G297bBqMzYvTbD6_Bkd9.png" style="height: 95px; width: 100%;">
    <p style="font-size: 20px;">❄️Vintern-1B-v3_5❄️</p>
    <p style="font-size: 14px;">An Efficient Multimodal Large Language Model for Vietnamese🇻🇳</p>
    <a href="https://huggingface.co/papers/2408.12480" style="font-size: 13px;">[📖 Vintern Paper]</a>
    <a href="https://huggingface.co/5CD-AI" style="font-size: 13px;">[🤗 Huggingface]</a>
</div>
"""

description_html = """
<div style="text-align: left;">
    <p style="font-size: 12px;">Vintern-1B-v3.5 is the latest in the Vintern series, bringing major improvements over v2 across all benchmarks. This continuous fine-tuning Version enhances Vietnamese capabilities while retaining strong English performance. It excels in OCR, text recognition, and Vietnam-specific document understanding.</p>
</div>
"""

tos_markdown = """
### Terms of use
By using this service, users are required to agree to the following terms:
It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes.
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
"""


# .gradio-container {margin: 5px 10px 0 10px !important};
block_css = """
.gradio-container {margin: 0.1% 1% 0 1% !important; max-width: 98% !important;};
#buttons button {
    min-width: min(120px,100%);
}

.gradient-text {
    font-size: 28px;
    width: auto;
    font-weight: bold;
    background: linear-gradient(45deg, red, orange, yellow, green, blue, indigo, violet);
    background-clip: text;
    -webkit-background-clip: text;
    color: transparent;
}

.plain-text {
    font-size: 22px;
    width: auto;
    font-weight: bold;
}
"""

js = """
function createWaveAnimation() {
    const text = document.getElementById('text');
    var i = 0;
    setInterval(function() {
        const colors = [
            'red, orange, yellow, green, blue, indigo, violet, purple',
            'orange, yellow, green, blue, indigo, violet, purple, red',
            'yellow, green, blue, indigo, violet, purple, red, orange',
            'green, blue, indigo, violet, purple, red, orange, yellow',
            'blue, indigo, violet, purple, red, orange, yellow, green',
            'indigo, violet, purple, red, orange, yellow, green, blue',
            'violet, purple, red, orange, yellow, green, blue, indigo',
            'purple, red, orange, yellow, green, blue, indigo, violet',
        ];
        const angle = 45;
        const colorIndex = i % colors.length;
        text.style.background = `linear-gradient(${angle}deg, ${colors[colorIndex]})`;
        text.style.webkitBackgroundClip = 'text';
        text.style.backgroundClip = 'text';
        text.style.color = 'transparent';
        text.style.fontSize = '28px';
        text.style.width = 'auto';
        text.textContent = 'Vintern-1B';
        text.style.fontWeight = 'bold';
        i += 1;
    }, 200);
    const params = new URLSearchParams(window.location.search);
    url_params = Object.fromEntries(params);
    // console.log(url_params);
    // console.log('hello world...');
    // console.log(window.location.search);
    // console.log('hello world...');
    // alert(window.location.search)
    // alert(url_params);
    return url_params;
}

"""


def build_demo():
    textbox = gr.MultimodalTextbox(
        interactive=True,
        file_types=["image", "video"],
        placeholder="Enter message or upload file...",
        show_label=False,
    )

    with gr.Blocks(
        title="❄️ Vintern-1B-v3_5-Demo ❄️",
        theme="NoCrypt/miku",
        css=block_css,
        js=js,
    ) as demo:
        state = gr.State()

        with gr.Row():
            with gr.Column(scale=2):
                gr.HTML(title_html)

                with gr.Accordion("Settings", open=False) as setting_row:
                    system_prompt = gr.Textbox(
                        value="Bạn là một trợ lý AI đa phương thức hữu ích, hãy trả lời câu hỏi người dùng một cách chi tiết.",
                        label="System Prompt",
                        interactive=True,
                    )
                    temperature = gr.Slider(
                        minimum=0.0,
                        maximum=1.0,
                        value=1.0,
                        step=0.1,
                        interactive=True,
                        label="Temperature",
                    )
                    do_sample = gr.Checkbox(
                        label="Sampling",
                        value=False,
                        interactive=True,
                    )

                    top_p = gr.Slider(
                        minimum=0.0,
                        maximum=1.0,
                        value=0.9,
                        step=0.1,
                        interactive=True,
                        label="Top P",
                    )
                    repetition_penalty = gr.Slider(
                        minimum=1.0,
                        maximum=3.0,
                        value=2.2,
                        step=0.02,
                        interactive=True,
                        label="Repetition penalty",
                    )
                    max_output_tokens = gr.Slider(
                        minimum=0,
                        maximum=4096,
                        value=700,
                        step=64,
                        interactive=True,
                        label="Max output tokens",
                    )
                    max_input_tiles = gr.Slider(
                        minimum=1,
                        maximum=12,
                        value=6,
                        step=1,
                        interactive=True,
                        label="Max input tiles (control the image size)",
                    )
                examples = gr.Examples(
                    examples=[
                        [
                            {
                                "files": [
                                    "samples/1.jpg",
                                ],
                                "text": "Hãy trích xuất thông tin từ hình ảnh này và trả về kết quả dạng markdown.",
                            }
                        ],
                        [
                            {
                                "files": [
                                    "samples/2.png",
                                ],
                                "text": "Bạn là một nhà sáng tạo nội dung tài năng. Hãy viết một kịch bản quảng cáo cho sản phẩm này.",
                            }
                        ],
                        [
                            {
                                "files": [
                                    "samples/3.jpeg",
                                ],
                                "text": "Hãy viết lại một email cho các chủ hộ về nội dung của bảng thông báo.",
                            }
                        ],
                        [
                            {
                                "files": [
                                    "samples/6.jpeg",
                                ],
                                "text": "Hãy viết trích xuất nội dung của hoá đơn dạng JSON.",
                            }
                        ],
                    ],
                    inputs=[textbox],
                )

            with gr.Column(scale=8):
                chatbot = gr.Chatbot(
                    elem_id="chatbot",
                    label="Vintern-1B-v3_5-Demo",
                    height=580,
                    show_copy_button=True,
                    show_share_button=True,
                    avatar_images=[
                        "assets/human.png",
                        "assets/assistant.png",
                    ],
                    bubble_full_width=False,
                )
                with gr.Row():
                    with gr.Column(scale=8):
                        textbox.render()
                    with gr.Column(scale=1, min_width=50):
                        submit_btn = gr.Button(value="Send", variant="primary")
                with gr.Row(elem_id="buttons") as button_row:
                    upvote_btn = gr.Button(value="👍  Upvote", interactive=False)
                    downvote_btn = gr.Button(value="👎  Downvote", interactive=False)
                    flag_btn = gr.Button(value="⚠️  Flag", interactive=False)
                    # stop_btn = gr.Button(value="⏹️  Stop Generation", interactive=False)
                    regenerate_btn = gr.Button(
                        value="🔄  Regenerate", interactive=False
                    )
                    clear_btn = gr.Button(value="🗑️  Clear", interactive=False)
                with gr.Row():
                    gr.HTML(description_html)

        gr.Markdown(tos_markdown)
        url_params = gr.JSON(visible=False)

        # Register listeners
        btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
        upvote_btn.click(
            upvote_last_response,
            [state],
            [textbox, upvote_btn, downvote_btn, flag_btn],
        )
        downvote_btn.click(
            downvote_last_response,
            [state],
            [textbox, upvote_btn, downvote_btn, flag_btn],
        )
        chatbot.like(
            vote_selected_response,
            [state],
            [],
        )
        flag_btn.click(
            flag_last_response,
            [state],
            [textbox, upvote_btn, downvote_btn, flag_btn],
        )
        regenerate_btn.click(
            regenerate,
            [state, system_prompt],
            [state, chatbot, textbox] + btn_list,
        ).then(
            ai_bot,
            [
                state,
                temperature,
                do_sample,
                top_p,
                repetition_penalty,
                max_output_tokens,
                max_input_tiles,
            ],
            [state, chatbot, textbox] + btn_list,
        )
        clear_btn.click(clear_history, None, [state, chatbot, textbox] + btn_list)

        textbox.submit(
            add_text,
            [state, textbox, system_prompt],
            [state, chatbot, textbox] + btn_list,
        ).then(
            ai_bot,
            [
                state,
                temperature,
                do_sample,
                top_p,
                repetition_penalty,
                max_output_tokens,
                max_input_tiles,
            ],
            [state, chatbot, textbox] + btn_list,
        )
        submit_btn.click(
            add_text,
            [state, textbox, system_prompt],
            [state, chatbot, textbox] + btn_list,
        ).then(
            ai_bot,
            [
                state,
                temperature,
                do_sample,
                top_p,
                repetition_penalty,
                max_output_tokens,
                max_input_tiles,
            ],
            [state, chatbot, textbox] + btn_list,
        )

    return demo


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--host", type=str, default="0.0.0.0")
    parser.add_argument("--port", type=int, default=7860)
    parser.add_argument("--concurrency-count", type=int, default=10)
    parser.add_argument("--share", action="store_true")
    parser.add_argument("--moderate", action="store_true")
    args = parser.parse_args()
    logger.info(f"args: {args}")

    logger.info(args)
    demo = build_demo()
    demo.queue(api_open=False).launch(
        server_name=args.host,
        server_port=args.port,
        share=args.share,
        max_threads=args.concurrency_count,
    )