rag2 / app.py
user
Address tokenizer FutureWarning and clean up tokenization spaces
ecb7b4d
raw
history blame
5.33 kB
import streamlit as st
import torch
from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM
import faiss
import numpy as np
import os
import pickle
import warnings
warnings.filterwarnings("ignore", category=FutureWarning, module="transformers")
@st.cache_resource
def load_models():
try:
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
embedding_model = AutoModel.from_pretrained("distilbert-base-uncased")
generation_model = AutoModelForCausalLM.from_pretrained("gpt2")
return tokenizer, embedding_model, generation_model
except Exception as e:
st.error(f"Error loading models: {str(e)}")
return None, None, None
@st.cache_data
def load_and_process_text(file_path):
try:
with open(file_path, 'r', encoding='utf-8') as file:
text = file.read()
chunks = [text[i:i+512] for i in range(0, len(text), 512)]
return chunks
except Exception as e:
st.error(f"Error loading text file: {str(e)}")
return []
@st.cache_data
def create_embeddings(chunks, _embedding_model):
embeddings = []
for chunk in chunks:
inputs = tokenizer(chunk, return_tensors="pt", padding=True, truncation=True, max_length=512)
with torch.no_grad():
outputs = _embedding_model(**inputs)
embeddings.append(outputs.last_hidden_state.mean(dim=1).squeeze().numpy())
return np.array(embeddings)
@st.cache_resource
def create_faiss_index(embeddings):
index = faiss.IndexFlatL2(embeddings.shape[1])
index.add(embeddings)
return index
def generate_response(query, tokenizer, generation_model, embedding_model, index, chunks):
inputs = tokenizer(query, return_tensors="pt", padding=True, truncation=True, max_length=512)
with torch.no_grad():
outputs = embedding_model(**inputs)
query_embedding = outputs.last_hidden_state.mean(dim=1).squeeze().numpy()
k = 3
_, I = index.search(query_embedding.reshape(1, -1), k)
context = " ".join([chunks[i] for i in I[0]])
prompt = f"As the Muse of A.R. Ammons, respond to this query: {query}\nContext: {context}\nMuse:"
input_ids = tokenizer.encode(prompt, return_tensors="pt")
output = generation_model.generate(input_ids, max_new_tokens=100, num_return_sequences=1, temperature=0.7)
response = tokenizer.decode(output[0], skip_special_tokens=True)
muse_response = response.split("Muse:")[-1].strip()
return muse_response
def save_data(chunks, embeddings, index):
with open('chunks.pkl', 'wb') as f:
pickle.dump(chunks, f)
np.save('embeddings.npy', embeddings)
faiss.write_index(index, 'faiss_index.bin')
def load_data():
if os.path.exists('chunks.pkl') and os.path.exists('embeddings.npy') and os.path.exists('faiss_index.bin'):
with open('chunks.pkl', 'rb') as f:
chunks = pickle.load(f)
embeddings = np.load('embeddings.npy')
index = faiss.read_index('faiss_index.bin')
return chunks, embeddings, index
return None, None, None
# Streamlit UI
st.set_page_config(page_title="A.R. Ammons' Muse Chatbot", page_icon="🎭")
st.title("A.R. Ammons' Muse Chatbot 🎭")
st.markdown("""
<style>
.big-font {
font-size:20px !important;
font-weight: bold;
}
</style>
""", unsafe_allow_html=True)
st.markdown('<p class="big-font">Chat with the Muse of A.R. Ammons. Ask questions or discuss poetry!</p>', unsafe_allow_html=True)
# Load models and data
with st.spinner("Loading models and data..."):
tokenizer, embedding_model, generation_model = load_models()
chunks, embeddings, index = load_data()
if chunks is None or embeddings is None or index is None:
chunks = load_and_process_text('ammons_muse.txt')
embeddings = create_embeddings(chunks, embedding_model)
index = create_faiss_index(embeddings)
save_data(chunks, embeddings, index)
if tokenizer is None or embedding_model is None or generation_model is None or not chunks:
st.error("Failed to load necessary components. Please try again later.")
st.stop()
# Initialize chat history
if 'messages' not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# React to user input
if prompt := st.chat_input("What would you like to ask the Muse?"):
st.chat_message("user").markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
with st.spinner("The Muse is contemplating..."):
try:
response = generate_response(prompt, tokenizer, generation_model, embedding_model, index, chunks)
except Exception as e:
response = f"I apologize, but I encountered an error: {str(e)}"
with st.chat_message("assistant"):
st.markdown(response)
st.session_state.messages.append({"role": "assistant", "content": response})
# Add a button to clear chat history
if st.button("Clear Chat History"):
st.session_state.messages = []
st.experimental_rerun()
# Add a footer
st.markdown("---")
st.markdown("*Powered by the spirit of A.R. Ammons and the magic of AI*")