File size: 5,334 Bytes
576b273
 
 
b300879
 
a4614bf
 
ecb7b4d
 
b300879
576b273
 
 
 
 
 
 
 
 
 
b300879
576b273
 
 
 
 
 
 
 
 
 
b300879
576b273
cc19159
576b273
 
 
 
cc19159
576b273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b300879
576b273
a4614bf
576b273
 
 
 
 
a4614bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
576b273
 
b300879
576b273
 
 
 
 
 
 
 
 
 
b300879
576b273
 
 
a4614bf
 
 
 
 
 
b300879
576b273
 
 
b300879
576b273
 
 
b300879
576b273
 
 
 
b300879
576b273
 
 
 
 
 
 
 
 
 
 
 
 
 
b300879
576b273
 
 
 
b300879
576b273
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import streamlit as st
import torch
from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM
import faiss
import numpy as np
import os
import pickle
import warnings
warnings.filterwarnings("ignore", category=FutureWarning, module="transformers")

@st.cache_resource
def load_models():
    try:
        tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
        embedding_model = AutoModel.from_pretrained("distilbert-base-uncased")
        generation_model = AutoModelForCausalLM.from_pretrained("gpt2")
        return tokenizer, embedding_model, generation_model
    except Exception as e:
        st.error(f"Error loading models: {str(e)}")
        return None, None, None

@st.cache_data
def load_and_process_text(file_path):
    try:
        with open(file_path, 'r', encoding='utf-8') as file:
            text = file.read()
        chunks = [text[i:i+512] for i in range(0, len(text), 512)]
        return chunks
    except Exception as e:
        st.error(f"Error loading text file: {str(e)}")
        return []

@st.cache_data
def create_embeddings(chunks, _embedding_model):
    embeddings = []
    for chunk in chunks:
        inputs = tokenizer(chunk, return_tensors="pt", padding=True, truncation=True, max_length=512)
        with torch.no_grad():
            outputs = _embedding_model(**inputs)
        embeddings.append(outputs.last_hidden_state.mean(dim=1).squeeze().numpy())
    return np.array(embeddings)

@st.cache_resource
def create_faiss_index(embeddings):
    index = faiss.IndexFlatL2(embeddings.shape[1])
    index.add(embeddings)
    return index

def generate_response(query, tokenizer, generation_model, embedding_model, index, chunks):
    inputs = tokenizer(query, return_tensors="pt", padding=True, truncation=True, max_length=512)
    with torch.no_grad():
        outputs = embedding_model(**inputs)
    query_embedding = outputs.last_hidden_state.mean(dim=1).squeeze().numpy()
    
    k = 3
    _, I = index.search(query_embedding.reshape(1, -1), k)
    
    context = " ".join([chunks[i] for i in I[0]])
    
    prompt = f"As the Muse of A.R. Ammons, respond to this query: {query}\nContext: {context}\nMuse:"
    
    input_ids = tokenizer.encode(prompt, return_tensors="pt")
    output = generation_model.generate(input_ids, max_new_tokens=100, num_return_sequences=1, temperature=0.7)
    response = tokenizer.decode(output[0], skip_special_tokens=True)
    
    muse_response = response.split("Muse:")[-1].strip()
    return muse_response

def save_data(chunks, embeddings, index):
    with open('chunks.pkl', 'wb') as f:
        pickle.dump(chunks, f)
    np.save('embeddings.npy', embeddings)
    faiss.write_index(index, 'faiss_index.bin')

def load_data():
    if os.path.exists('chunks.pkl') and os.path.exists('embeddings.npy') and os.path.exists('faiss_index.bin'):
        with open('chunks.pkl', 'rb') as f:
            chunks = pickle.load(f)
        embeddings = np.load('embeddings.npy')
        index = faiss.read_index('faiss_index.bin')
        return chunks, embeddings, index
    return None, None, None

# Streamlit UI
st.set_page_config(page_title="A.R. Ammons' Muse Chatbot", page_icon="🎭")

st.title("A.R. Ammons' Muse Chatbot 🎭")
st.markdown("""
    <style>
    .big-font {
        font-size:20px !important;
        font-weight: bold;
    }
    </style>
    """, unsafe_allow_html=True)
st.markdown('<p class="big-font">Chat with the Muse of A.R. Ammons. Ask questions or discuss poetry!</p>', unsafe_allow_html=True)

# Load models and data
with st.spinner("Loading models and data..."):
    tokenizer, embedding_model, generation_model = load_models()
    chunks, embeddings, index = load_data()
    if chunks is None or embeddings is None or index is None:
        chunks = load_and_process_text('ammons_muse.txt')
        embeddings = create_embeddings(chunks, embedding_model)
        index = create_faiss_index(embeddings)
        save_data(chunks, embeddings, index)

if tokenizer is None or embedding_model is None or generation_model is None or not chunks:
    st.error("Failed to load necessary components. Please try again later.")
    st.stop()

# Initialize chat history
if 'messages' not in st.session_state:
    st.session_state.messages = []

# Display chat messages from history on app rerun
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

# React to user input
if prompt := st.chat_input("What would you like to ask the Muse?"):
    st.chat_message("user").markdown(prompt)
    st.session_state.messages.append({"role": "user", "content": prompt})

    with st.spinner("The Muse is contemplating..."):
        try:
            response = generate_response(prompt, tokenizer, generation_model, embedding_model, index, chunks)
        except Exception as e:
            response = f"I apologize, but I encountered an error: {str(e)}"
    
    with st.chat_message("assistant"):
        st.markdown(response)
    st.session_state.messages.append({"role": "assistant", "content": response})

# Add a button to clear chat history
if st.button("Clear Chat History"):
    st.session_state.messages = []
    st.experimental_rerun()

# Add a footer
st.markdown("---")
st.markdown("*Powered by the spirit of A.R. Ammons and the magic of AI*")