Spaces:
Sleeping
Sleeping
user
commited on
Commit
·
576b273
1
Parent(s):
b300879
req file
Browse files- app.py +107 -67
- requirements.txt +8 -0
app.py
CHANGED
@@ -1,81 +1,121 @@
|
|
1 |
-
import
|
2 |
-
|
|
|
3 |
import faiss
|
4 |
-
from transformers import pipeline
|
5 |
import numpy as np
|
6 |
-
import os
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
def
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
def
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
#
|
49 |
-
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
|
|
|
53 |
|
54 |
-
#
|
55 |
-
|
56 |
-
|
57 |
-
query_vector = model.encode([query])
|
58 |
-
_, indices = index.search(query_vector.astype('float32'), top_k)
|
59 |
-
return [chunks[i] for i in indices[0]]
|
60 |
|
61 |
-
#
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
Context: {' '.join(relevant_chunks)}
|
66 |
-
User: {query}
|
67 |
-
Muse:"""
|
68 |
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
#
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
outputs="text",
|
77 |
-
title="A.R. Ammons' Muse Chatbot",
|
78 |
-
description="Ask a question and get a response from the Muse of A.R. Ammons' poetry."
|
79 |
-
)
|
80 |
|
81 |
-
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM
|
4 |
import faiss
|
|
|
5 |
import numpy as np
|
|
|
6 |
|
7 |
+
@st.cache_resource
|
8 |
+
def load_models():
|
9 |
+
try:
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
11 |
+
embedding_model = AutoModel.from_pretrained("distilbert-base-uncased")
|
12 |
+
generation_model = AutoModelForCausalLM.from_pretrained("gpt2")
|
13 |
+
return tokenizer, embedding_model, generation_model
|
14 |
+
except Exception as e:
|
15 |
+
st.error(f"Error loading models: {str(e)}")
|
16 |
+
return None, None, None
|
17 |
|
18 |
+
@st.cache_data
|
19 |
+
def load_and_process_text(file_path):
|
20 |
+
try:
|
21 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
22 |
+
text = file.read()
|
23 |
+
chunks = [text[i:i+512] for i in range(0, len(text), 512)]
|
24 |
+
return chunks
|
25 |
+
except Exception as e:
|
26 |
+
st.error(f"Error loading text file: {str(e)}")
|
27 |
+
return []
|
28 |
|
29 |
+
@st.cache_data
|
30 |
+
def create_embeddings(chunks, tokenizer, embedding_model):
|
31 |
+
embeddings = []
|
32 |
+
for chunk in chunks:
|
33 |
+
inputs = tokenizer(chunk, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
34 |
+
with torch.no_grad():
|
35 |
+
outputs = embedding_model(**inputs)
|
36 |
+
embeddings.append(outputs.last_hidden_state.mean(dim=1).squeeze().numpy())
|
37 |
+
return np.array(embeddings)
|
38 |
+
|
39 |
+
@st.cache_resource
|
40 |
+
def create_faiss_index(embeddings):
|
41 |
+
index = faiss.IndexFlatL2(embeddings.shape[1])
|
42 |
+
index.add(embeddings)
|
43 |
+
return index
|
44 |
+
|
45 |
+
def generate_response(query, tokenizer, generation_model, embedding_model, index, chunks):
|
46 |
+
inputs = tokenizer(query, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
47 |
+
with torch.no_grad():
|
48 |
+
outputs = embedding_model(**inputs)
|
49 |
+
query_embedding = outputs.last_hidden_state.mean(dim=1).squeeze().numpy()
|
50 |
+
|
51 |
+
k = 3
|
52 |
+
_, I = index.search(query_embedding.reshape(1, -1), k)
|
53 |
+
|
54 |
+
context = " ".join([chunks[i] for i in I[0]])
|
55 |
+
|
56 |
+
prompt = f"As the Muse of A.R. Ammons, respond to this query: {query}\nContext: {context}\nMuse:"
|
57 |
|
58 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
59 |
+
output = generation_model.generate(input_ids, max_length=200, num_return_sequences=1, temperature=0.7)
|
60 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
61 |
+
|
62 |
+
muse_response = response.split("Muse:")[-1].strip()
|
63 |
+
return muse_response
|
64 |
+
|
65 |
+
# Streamlit UI
|
66 |
+
st.set_page_config(page_title="A.R. Ammons' Muse Chatbot", page_icon="🎭")
|
67 |
|
68 |
+
st.title("A.R. Ammons' Muse Chatbot 🎭")
|
69 |
+
st.markdown("""
|
70 |
+
<style>
|
71 |
+
.big-font {
|
72 |
+
font-size:20px !important;
|
73 |
+
font-weight: bold;
|
74 |
+
}
|
75 |
+
</style>
|
76 |
+
""", unsafe_allow_html=True)
|
77 |
+
st.markdown('<p class="big-font">Chat with the Muse of A.R. Ammons. Ask questions or discuss poetry!</p>', unsafe_allow_html=True)
|
78 |
|
79 |
+
# Load models and data
|
80 |
+
with st.spinner("Loading models and data..."):
|
81 |
+
tokenizer, embedding_model, generation_model = load_models()
|
82 |
+
chunks = load_and_process_text('ammons_muse.txt')
|
83 |
+
embeddings = create_embeddings(chunks, tokenizer, embedding_model)
|
84 |
+
index = create_faiss_index(embeddings)
|
85 |
|
86 |
+
if tokenizer is None or embedding_model is None or generation_model is None or not chunks:
|
87 |
+
st.error("Failed to load necessary components. Please try again later.")
|
88 |
+
st.stop()
|
89 |
|
90 |
+
# Initialize chat history
|
91 |
+
if 'messages' not in st.session_state:
|
92 |
+
st.session_state.messages = []
|
|
|
|
|
|
|
93 |
|
94 |
+
# Display chat messages from history on app rerun
|
95 |
+
for message in st.session_state.messages:
|
96 |
+
with st.chat_message(message["role"]):
|
97 |
+
st.markdown(message["content"])
|
|
|
|
|
|
|
98 |
|
99 |
+
# React to user input
|
100 |
+
if prompt := st.chat_input("What would you like to ask the Muse?"):
|
101 |
+
st.chat_message("user").markdown(prompt)
|
102 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
103 |
+
|
104 |
+
with st.spinner("The Muse is contemplating..."):
|
105 |
+
try:
|
106 |
+
response = generate_response(prompt, tokenizer, generation_model, embedding_model, index, chunks)
|
107 |
+
except Exception as e:
|
108 |
+
response = f"I apologize, but I encountered an error: {str(e)}"
|
109 |
+
|
110 |
+
with st.chat_message("assistant"):
|
111 |
+
st.markdown(response)
|
112 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
113 |
|
114 |
+
# Add a button to clear chat history
|
115 |
+
if st.button("Clear Chat History"):
|
116 |
+
st.session_state.messages = []
|
117 |
+
st.experimental_rerun()
|
|
|
|
|
|
|
|
|
118 |
|
119 |
+
# Add a footer
|
120 |
+
st.markdown("---")
|
121 |
+
st.markdown("*Powered by the spirit of A.R. Ammons and the magic of AI*")
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
torch
|
3 |
+
transformers
|
4 |
+
sentence-transformers
|
5 |
+
faiss-cpu
|
6 |
+
numpy
|
7 |
+
datasets
|
8 |
+
streamlit
|