File size: 13,325 Bytes
95117cd
 
0b07a42
 
 
 
 
f829331
0b07a42
 
2966484
b7b9e52
15822f7
e879520
2966484
 
adcaa2b
 
 
2966484
86c5452
80c27a4
e2a0c87
86c5452
d18a238
b7b9e52
e2a0c87
b7b9e52
0b07a42
f829331
0b07a42
 
 
 
 
f829331
0b07a42
f829331
b7b9e52
0b07a42
 
 
 
 
 
 
 
 
 
b7b9e52
0b07a42
 
 
 
 
 
 
 
 
 
b7b9e52
0b07a42
b7b9e52
86c5452
 
 
 
 
 
0b07a42
b7b9e52
f829331
0b07a42
 
 
 
 
 
 
 
 
 
 
f829331
 
 
 
 
 
b7b9e52
f829331
0b07a42
f829331
 
95117cd
0b07a42
 
 
 
 
 
5abe76f
 
0b07a42
 
 
 
 
 
5abe76f
3ea6115
5abe76f
 
 
 
 
 
0b07a42
 
 
 
 
 
 
 
 
f829331
 
b7b9e52
 
 
 
 
 
 
 
 
 
15822f7
 
 
 
95117cd
 
f829331
 
 
 
 
15822f7
f829331
 
 
 
b7b9e52
 
 
 
 
 
f829331
 
 
 
 
95117cd
f829331
15822f7
 
 
f829331
 
 
b7b9e52
74c94d1
0b07a42
 
b7b9e52
 
 
 
 
 
f829331
95117cd
f829331
adcaa2b
4cb217b
adcaa2b
 
 
 
 
2980f51
d18a238
b7b9e52
adcaa2b
b7b9e52
adcaa2b
d18a238
adcaa2b
 
4cb217b
2966484
 
4cb217b
 
 
 
adcaa2b
 
 
b7b9e52
af0f390
 
b7b9e52
 
af0f390
 
 
 
 
 
 
 
0b07a42
af0f390
 
b7b9e52
0b07a42
40be773
79d529c
4a4a0a9
 
 
 
 
 
 
adcaa2b
 
b7b9e52
95117cd
b7b9e52
95117cd
 
 
 
 
 
 
 
 
446174f
 
 
b7b9e52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdd2487
b7b9e52
 
 
cdd2487
b7b9e52
 
 
 
 
446174f
 
b7b9e52
 
 
 
0b07a42
 
 
 
 
 
 
 
 
 
 
 
f829331
 
 
15822f7
f829331
 
 
 
 
15822f7
f829331
 
0b07a42
 
 
 
 
 
 
 
 
 
 
86c5452
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import io
import json
import re

import gradio as gr
import pandas as pd
import plotly
import plotly.express as px
from pandas.api.types import is_numeric_dtype

from pipeline.config import LLMBoardConfig, QueriesConfig
from app_constants import README, JS, TIME_PERIODS_EXPLANATION_DF
from itertools import chain

queries_config = QueriesConfig()

output_types_df = pd.DataFrame(
    {"Output Type": queries_config.query_template.keys(), "Added text": queries_config.query_template.values()}
)

summary_df: pd.DataFrame = pd.read_csv("data/summary.csv")
time_of_day_comparison_df = pd.read_csv("data/time_of_day_comparison.csv")
general_plots = pd.read_csv("data/general_plots.csv")
model_costs_df = pd.read_csv("data/model_costs.csv")
time_of_day_plots = pd.read_csv("data/time_of_day_plots.csv")
summary_metrics_plots = pd.read_csv("data/summary_metrics_plots.csv")
output_plots = pd.read_csv("data/output_plots.csv")
combined_plots = pd.read_csv("data/combined_plots.csv")

searched_query = ""
collapse_languages = False
collapse_output_method = False


def filter_dataframes(input: str):
    global searched_query
    input = input.lower()
    searched_query = input
    return get_updated_dataframes()


def collapse_languages_toggle():
    global collapse_languages
    if collapse_languages:
        collapse_languages = False
        button_text = "Collapse languages"
    else:
        collapse_languages = True
        button_text = "Un-collapse languages"
    return get_updated_dataframes()[0], button_text


def collapse_output_method_toggle():
    global collapse_output_method
    if collapse_output_method:
        collapse_output_method = False
        button_text = "Collapse output method"
    else:
        collapse_output_method = True
        button_text = "Un-collapse output method"
    return get_updated_dataframes()[0], button_text

def filter_dataframe_by_models(df, searched_model_names):
    if not searched_model_names:
        return df
    filter_series = df.model == "" # False values
    for n in searched_model_names:
        filter_series = filter_series | df.model.str.lower().str.contains(n)
    return df[filter_series]

def get_updated_dataframes():
    global collapse_languages, collapse_output_method, searched_query, summary_df, time_of_day_comparison_df, model_costs_df

    summary_df_columns = summary_df.columns.to_list()
    group_columns = LLMBoardConfig().group_columns.copy()
    if collapse_languages:
        summary_df_columns.remove("language")
        group_columns.remove("language")
    if collapse_output_method:
        summary_df_columns.remove("template_name")
        group_columns.remove("template_name")

    summary_df_processed = summary_df[summary_df_columns].groupby(by=group_columns).mean().reset_index()

    searched_model_names = searched_query.split("|")
    searched_model_names = [n.lower().strip() for n in searched_model_names]
    searched_model_names = [n for n in searched_model_names if n]

    def for_dataframe(df):
        return dataframe_style(filter_dataframe_by_models(df, searched_model_names))

    return (
        for_dataframe(summary_df_processed),
        for_dataframe(time_of_day_comparison_df),
        for_dataframe(model_costs_df),
    )


def dataframe_style(df: pd.DataFrame):
    df = df.copy()
    column_formats = {}
    new_column_names = []

    for column in df.columns:
        if is_numeric_dtype(df[column]):
            if column == "execution_time":
                column_formats[column] = "{:.4f}"
            else:
                column_formats[column] = "{:.2f}"
        new_column_name = snake_case_to_title(column)
        if "time" in column and column != "time_of_day":
            new_column_name += " (Seconds)"
        elif "chunk" in column:
            new_column_name += " (Characters)"
        new_column_names.append(new_column_name)
    
    df.columns = new_column_names
    df = df.style.format(column_formats, na_rep="")
    return df

def snake_case_to_title(text):
    # Convert snake_case to title-case
    words = re.split(r"_", text)
    title_words = [word.capitalize() for word in words]
    return " ".join(title_words)

plots = []

def display_plot(plot_df_row):
    row = dict(plot_df_row)
    plot = plotly.io.from_json(row["plot_json"])
    plot.update_layout(autosize=True)
    return (gr.Plot(plot, label=row["header"], scale=1), plot)

def display_filtered_plot(plot_df_row):
    row = dict(plot_df_row)
    plot_element, plot = display_plot(plot_df_row)
    if "description" in row and pd.notna(row["description"]):
        description_element = gr.Markdown(str(row["description"]))
    else:
        description_element = gr.Markdown(value="", visible=False)
    plots.append((plot_element, description_element, plot, row))

def filter_plots(searched_query: str):
    searched_model_names = searched_query.split("|")
    searched_model_names = [n.lower().strip() for n in searched_model_names]
    searched_model_names = [n for n in searched_model_names if n]

    results = []
    for plot_display, description_element, plot, row in plots:
        visible = True
        if "df" in row and pd.notna(row["df"]):
            buffer = io.StringIO(row["df"])
            df = pd.read_csv(buffer)
            df = filter_dataframe_by_models(df, searched_model_names)
            plot_constructor = px.bar
            if "plot_type" in row and pd.notna(row["plot_type"]) and row["plot_type"]:
                if row["plot_type"] == "scatter":
                    plot_constructor = px.scatter
            plot = plot_constructor(df, **json.loads(row["arguments"]))
            plot.update_layout(autosize=True)
        elif "for model" in row["header"] and searched_model_names:
            plot_model = row["header"].split("for model")[1].lower()
            if not any(n in plot_model for n in searched_model_names):
                visible = False

        results.append(gr.Plot(plot, visible=visible))
        if not description_element.value:
            visible = False
        results.append(gr.Markdown(visible=visible))

    return results

with gr.Blocks(theme=gr.themes.Default(text_size="lg"), js=JS) as demo:
    gr.HTML("<h1>Performance LLM Board</h1>")

    with gr.Row():
        filter_textbox = gr.Textbox(label="Model name parts *", scale=2, elem_id="filter-textbox")
        filter_button = gr.Button("Filter", scale=1, elem_id="filter-button")
        with gr.Column(scale=1):
            open_ai_button = gr.Button("Compare Open AI models", elem_id="open-ai-button", scale=1)
            google_button = gr.Button("Compare Google Models", elem_id="google-button", scale=1)
            # gr.Button("Open Models", size="sm")
    gr.Markdown(
        '&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;\* You can use `|` operator to display multiple models at once, for example "gpt|mistral|zephyr"'
    )

    with gr.Tab("About this project"):
        gr.Markdown(
            README.format(
                queries_config.base_query_template.replace("```", "'''"), output_types_df.to_markdown(index=False)
            )
        )
    with gr.Tab("Performance by time of the day"):
        # display only first plot for all models
        time_of_day_plots[0:1].apply(display_filtered_plot, axis=1)
        time_periods_explanation_ui = gr.DataFrame(
            dataframe_style(TIME_PERIODS_EXPLANATION_DF), label="Times of day ranges"
        )
        time_of_day_comparison_ui = gr.DataFrame(dataframe_style(time_of_day_comparison_df), label="Time of day")
        gr.Markdown(
            """\
These measurements were made by testing the models using the same dataset as in the other comparisons every hour for 24 hours.
                    
Execution time refers to averaged time needed to execute one query.

Hours and times of day in the table and in the plot are based on Central European Time.
                    
Measurements were made during a normal work week.
"""
        )
        # display rest of the plots
        time_of_day_plots[1:].apply(display_filtered_plot, axis=1)
    with gr.Tab("Output characteristics"):
        with gr.Row():
            collapse_languages_button = gr.Button("Collapse languages")
            collapse_output_method_button = gr.Button("Collapse output method")
        summary_ui = gr.DataFrame(dataframe_style(summary_df), label="Output characteristics")
        gr.Markdown(
            """\
This table compares output characteristics of different models which include execution time, output size and chunking of the output. Some providers and models don't support output chunking, in this case chunk related fields are left empty.

Execution time refers to averaged time needed to execute one query.

To count words we split the output string by whitespace `\w` regex character.

Chunk sizes are measured in the characters count."""
        )
        output_plots.apply(display_filtered_plot, axis=1)
    with gr.Tab("Costs comparison"):
        models_costs_ui = gr.DataFrame(dataframe_style(model_costs_df), label="Costs comparison")
        gr.Markdown(
            """\
Provider pricing column contains pricing from the website of the provider.

Hugging Face Inference Endpoints are charged by hour so to compare different providers together, 
for models hosted this way we calculated "Cost Per Token" column using data collected during the experiment.

Note that pause and resume time cost was not included in the "Cost Per Token" column calculation.
            """
        )
        general_plots[general_plots.plot_name == "execution_costs"].apply(display_filtered_plot, axis=1)
    with gr.Tab("Context length and parameters count"):
        general_plots[general_plots.plot_name != "execution_costs"].apply(display_filtered_plot, axis=1)
        gr.Markdown(
            """
LLM models context length and parameters count are based on release blogs and documentation of their respective developers.

A lot of models had to be omitted due to their developers not disclosing their parameters count.

Mainly OpenAI's GPT models and Google's Palm 2.
"""
        )
    with gr.Tab("Summary quality metrics"):
        summary_metrics_plots.apply(display_filtered_plot, axis=1)
    with gr.Tab("Comprehensive models comparison"):
        with gr.Row():
            choices = combined_plots.header
            choices = choices[choices.str.contains("for model")]
            choices = choices.str.split("for model").apply(lambda x: x[1])
            def handle_dropdown(dropdown, plot_element):
                def dropdown_change_handler(value):
                    for _, row in combined_plots.iterrows():
                        if value in row["header"]:
                            return display_plot(row)[0]
                dropdown.change(
                    fn=dropdown_change_handler,
                    inputs=[dropdown],
                    outputs=[plot_element],
                    api_name="dropdown_change_handler",
                )
            with gr.Column():
                dropdown = gr.Dropdown(choices.tolist(), label="First model for comparison", value=choices.iloc[0])
                plot_element, plot = display_plot(combined_plots.iloc[3])
                handle_dropdown(dropdown, plot_element)
            with gr.Column():
                dropdown = gr.Dropdown(choices.tolist(), label="Second model for comparison", value=choices.iloc[1])
                plot_element, plot = display_plot(combined_plots.iloc[4])
                handle_dropdown(dropdown, plot_element)
        gr.Markdown("""
Radial plots are used to compare the most important aspects of each model researched on this board using single images.

All values are normalized and scaled into 0.25 to 1 range, 0 is left for unknown values.

Some metrics were reversed in order to make the plots more readable, for example "Fast execution" is `1 - execution_time` scaled to 0-1 range and moved 0.25 units up as mentioned above.
                    
To compare the parameters more thoroughly use the filtering box on top of this page and inspect individual tabs.
""")
        combined_plots.apply(display_filtered_plot, axis=1)
    filter_button.click(
        fn=filter_dataframes,
        inputs=filter_textbox,
        outputs=[summary_ui, time_of_day_comparison_ui, models_costs_ui],
        api_name="filter_dataframes",
    )
    filter_textbox.submit(
        fn=filter_dataframes,
        inputs=filter_textbox,
        outputs=[summary_ui, time_of_day_comparison_ui, models_costs_ui],
        api_name="filter_dataframes",
    )
    filter_button.click(
        fn=filter_plots,
        inputs=filter_textbox,
        outputs=list(chain.from_iterable([v[0:2] for v in plots])),
        api_name="filter_plots",
    )
    filter_textbox.submit(
        fn=filter_plots,
        inputs=filter_textbox,
        outputs=list(chain.from_iterable([v[0:2] for v in plots])),
        api_name="filter_plots",
    )
    collapse_languages_button.click(
        fn=collapse_languages_toggle,
        outputs=[summary_ui, collapse_languages_button],
        api_name="collapse_languages_toggle",
    )
    collapse_output_method_button.click(
        fn=collapse_output_method_toggle,
        outputs=[summary_ui, collapse_output_method_button],
        api_name="collapse_output_method_toggle",
    )

demo.launch()