Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,15 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
|
4 |
-
from
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
-
from
|
7 |
-
from langchain.chains import ChatVectorDBChain
|
8 |
-
from langchain.embeddings import OpenAIEmbeddings
|
9 |
from langchain.chains import ConversationalRetrievalChain
|
10 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
11 |
from langchain_community.llms import HuggingFacePipeline
|
12 |
from langchain.chains import ConversationChain
|
13 |
from langchain.memory import ConversationBufferMemory
|
14 |
from langchain_community.llms import HuggingFaceEndpoint
|
15 |
-
from langchain_community.chat_models.openai import ChatOpenAI
|
16 |
-
from langchain.chains import ConversationalRetrievalChain
|
17 |
-
from langchain.llms import OpenAI
|
18 |
|
19 |
from pathlib import Path
|
20 |
import chromadb
|
@@ -26,12 +21,27 @@ import torch
|
|
26 |
import tqdm
|
27 |
import accelerate
|
28 |
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
|
|
|
31 |
TOKEN = os.getenv('HUGGING_FACE_HUB_TOKEN')
|
32 |
|
33 |
|
34 |
-
|
|
|
|
|
|
|
|
|
35 |
# Load PDF document and create doc splits
|
36 |
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
37 |
# Processing for one document only
|
@@ -49,17 +59,20 @@ def load_doc(list_file_path, chunk_size, chunk_overlap):
|
|
49 |
return doc_splits
|
50 |
|
51 |
|
52 |
-
#
|
53 |
-
def create_db(
|
54 |
-
|
|
|
55 |
vectordb = Chroma.from_documents(
|
56 |
-
documents=
|
57 |
-
embedding=
|
|
|
|
|
58 |
collection_name=collection_name,
|
59 |
-
persist_directory=
|
60 |
)
|
61 |
-
vectordb.persist()
|
62 |
-
|
63 |
|
64 |
# Load vector database
|
65 |
def load_db():
|
@@ -70,34 +83,74 @@ def load_db():
|
|
70 |
return vectordb
|
71 |
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
)
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
# Example usage
|
86 |
-
if __name__ == "__main__":
|
87 |
-
# Suppose `documents` is a list of your documents and `collection_name` is your desired collection name
|
88 |
-
documents = [...] # your documents here
|
89 |
-
collection_name = "your_collection_name"
|
90 |
-
vectordb = create_db(documents, collection_name)
|
91 |
|
92 |
-
# Initialize the ChatVectorDBChain with the vector database
|
93 |
-
chat_vector_db_chain = initialize_chat_vector_db_chain(vectordb)
|
94 |
-
|
95 |
-
# Use the chain to process a query
|
96 |
-
query = "your query here"
|
97 |
-
result = chat_vector_db_chain({"question": query, "chat_history": ""})
|
98 |
-
|
99 |
-
print("Answer:")
|
100 |
-
print(result["answer"])
|
101 |
# Generate collection name for vector database
|
102 |
# - Use filepath as input, ensuring unicode text
|
103 |
def create_collection_name(filepath):
|
@@ -155,31 +208,36 @@ def format_chat_history(message, chat_history):
|
|
155 |
return formatted_chat_history
|
156 |
|
157 |
|
158 |
-
def conversation(
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
formatted_chat_history = format_chat_history(message, history)
|
160 |
-
|
161 |
-
|
162 |
# Generate response using QA chain
|
163 |
-
|
164 |
-
response_answer =
|
165 |
-
if
|
166 |
response_answer = response_answer.split("Helpful Answer:")[-1]
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
|
178 |
# Append user message and response to chat history
|
179 |
new_history = history + [(message, response_answer)]
|
180 |
-
# return gr.update(value=""), new_history, response_sources[0], response_sources[1]
|
181 |
-
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
182 |
|
|
|
|
|
183 |
|
184 |
def upload_file(file_obj):
|
185 |
list_file_path = []
|
@@ -190,7 +248,7 @@ def upload_file(file_obj):
|
|
190 |
# initialize_database(file_path, progress)
|
191 |
return list_file_path
|
192 |
|
193 |
-
|
194 |
def demo():
|
195 |
with gr.Blocks(theme="base") as demo:
|
196 |
vector_db = gr.State()
|
@@ -201,7 +259,6 @@ def demo():
|
|
201 |
"""PDF-based chatbot (by Dr. Aloke Upadhaya)</center></h2>
|
202 |
<h3>Ask any questions about your PDF documents, along with follow-ups</h3>
|
203 |
""")
|
204 |
-
|
205 |
with gr.Tab("Step 1 - Document pre-processing"):
|
206 |
with gr.Row():
|
207 |
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
|
@@ -282,3 +339,4 @@ def demo():
|
|
282 |
|
283 |
if __name__ == "__main__":
|
284 |
demo()
|
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
|
4 |
+
from langchain_community.document_loaders import PyPDFLoader
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain_community.vectorstores import Chroma
|
|
|
|
|
7 |
from langchain.chains import ConversationalRetrievalChain
|
8 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
9 |
from langchain_community.llms import HuggingFacePipeline
|
10 |
from langchain.chains import ConversationChain
|
11 |
from langchain.memory import ConversationBufferMemory
|
12 |
from langchain_community.llms import HuggingFaceEndpoint
|
|
|
|
|
|
|
13 |
|
14 |
from pathlib import Path
|
15 |
import chromadb
|
|
|
21 |
import tqdm
|
22 |
import accelerate
|
23 |
import re
|
24 |
+
from openai import OpenAI
|
25 |
+
from huggingface_hub import HfApi
|
26 |
+
from huggingface_hub import hf_hub_download
|
27 |
+
|
28 |
+
from langchain.document_loaders import PyPDFLoader
|
29 |
+
from langchain.embeddings import OpenAIEmbeddings
|
30 |
+
from langchain.chains import ChatVectorDBChain
|
31 |
+
from langchain.vectorstores import Chroma
|
32 |
+
from langchain.llms import OpenAI
|
33 |
+
import os
|
34 |
|
35 |
|
36 |
+
os.environ["OPENAI_API_KEY"]
|
37 |
TOKEN = os.getenv('HUGGING_FACE_HUB_TOKEN')
|
38 |
|
39 |
|
40 |
+
|
41 |
+
# default_persist_directory = './chroma_HF/'
|
42 |
+
list_llm = ["jondurbin/airoboros-gpt-3.5-turbo-100k-7b"]
|
43 |
+
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
44 |
+
|
45 |
# Load PDF document and create doc splits
|
46 |
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
47 |
# Processing for one document only
|
|
|
59 |
return doc_splits
|
60 |
|
61 |
|
62 |
+
# Create vector database
|
63 |
+
def create_db(splits, collection_name):
|
64 |
+
embedding = OpenAIEmbeddings()
|
65 |
+
new_client = chromadb.EphemeralClient()
|
66 |
vectordb = Chroma.from_documents(
|
67 |
+
documents=splits,
|
68 |
+
embedding=embedding,
|
69 |
+
persist_directory=".",
|
70 |
+
client=new_client,
|
71 |
collection_name=collection_name,
|
72 |
+
# persist_directory=default_persist_directory
|
73 |
)
|
74 |
+
return vectordb.persist()
|
75 |
+
|
76 |
|
77 |
# Load vector database
|
78 |
def load_db():
|
|
|
83 |
return vectordb
|
84 |
|
85 |
|
86 |
+
# Initialize langchain LLM chain
|
87 |
+
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
88 |
+
progress(0.1, desc="Initializing HF tokenizer...")
|
89 |
+
# HuggingFacePipeline uses local model
|
90 |
+
# Note: it will download model locally...
|
91 |
+
# tokenizer=AutoTokenizer.from_pretrained(llm_model)
|
92 |
+
# progress(0.5, desc="Initializing HF pipeline...")
|
93 |
+
# pipeline=transformers.pipeline(
|
94 |
+
# "text-generation",
|
95 |
+
# model=llm_model,
|
96 |
+
# tokenizer=tokenizer,
|
97 |
+
# torch_dtype=torch.bfloat16,
|
98 |
+
# trust_remote_code=True,
|
99 |
+
# device_map="auto",
|
100 |
+
# # max_length=1024,
|
101 |
+
# max_new_tokens=max_tokens,
|
102 |
+
# do_sample=True,
|
103 |
+
# top_k=top_k,
|
104 |
+
# num_return_sequences=1,
|
105 |
+
# eos_token_id=tokenizer.eos_token_id
|
106 |
+
# )
|
107 |
+
# llm = HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature': temperature})
|
108 |
+
|
109 |
+
# HuggingFaceHub uses HF inference endpoints
|
110 |
+
progress(0.5, desc="Initializing HF Hub...")
|
111 |
+
if llm_model == "jondurbin/airoboros-gpt-3.5-turbo-100k-7b":
|
112 |
+
llm = HuggingFaceEndpoint(
|
113 |
+
repo_id=llm_model,
|
114 |
+
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True}
|
115 |
+
temperature = temperature,
|
116 |
+
max_new_tokens = max_tokens,
|
117 |
+
top_k = top_k,
|
118 |
+
load_in_8bit = True,
|
119 |
+
)
|
120 |
|
121 |
+
else:
|
122 |
+
llm = HuggingFaceEndpoint(
|
123 |
+
repo_id=llm_model,
|
124 |
+
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
|
125 |
+
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
|
126 |
+
temperature = temperature,
|
127 |
+
max_new_tokens = max_tokens,
|
128 |
+
top_k = top_k,
|
129 |
+
)
|
130 |
+
|
131 |
+
progress(0.75, desc="Defining buffer memory...")
|
132 |
+
memory = ConversationBufferMemory(
|
133 |
+
memory_key="chat_history",
|
134 |
+
output_key='answer',
|
135 |
+
return_messages=True
|
136 |
)
|
137 |
+
# retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
|
138 |
+
retriever=vector_db.as_retriever()
|
139 |
+
progress(0.8, desc="Defining retrieval chain...")
|
140 |
+
qa_chain = ConversationalRetrievalChain.from_llm(
|
141 |
+
llm,
|
142 |
+
retriever=retriever,
|
143 |
+
chain_type="stuff",
|
144 |
+
memory=memory,
|
145 |
+
# combine_docs_chain_kwargs={"prompt": your_prompt})
|
146 |
+
return_source_documents=True,
|
147 |
+
#return_generated_question=False,
|
148 |
+
verbose=False,
|
149 |
+
)
|
150 |
+
progress(0.9, desc="Done!")
|
151 |
+
return qa_chain
|
152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
# Generate collection name for vector database
|
155 |
# - Use filepath as input, ensuring unicode text
|
156 |
def create_collection_name(filepath):
|
|
|
208 |
return formatted_chat_history
|
209 |
|
210 |
|
211 |
+
def conversation(vector_db, message, history):
|
212 |
+
# Initialize ChatOpenAI with your desired settings
|
213 |
+
chat_open_ai = ChatOpenAI(temperature=0.9, model_name="gpt-3.5-turbo")
|
214 |
+
# Assuming vector_db is already initialized correctly
|
215 |
+
pdf_ga = ChatVectorDBChain.from_llm(chat_open_ai, vector_db, return_source_documents=True)
|
216 |
+
|
217 |
+
# Format the chat history for input to the model
|
218 |
formatted_chat_history = format_chat_history(message, history)
|
219 |
+
|
|
|
220 |
# Generate response using QA chain
|
221 |
+
result = pdf_ga({"question": message, "chat_history": formatted_chat_history})
|
222 |
+
response_answer = result["answer"]
|
223 |
+
if "Helpful Answer:" in response_answer:
|
224 |
response_answer = response_answer.split("Helpful Answer:")[-1]
|
225 |
+
|
226 |
+
response_sources = result["source_documents"]
|
227 |
+
response_source1 = response_sources[0].page_content.strip() if len(response_sources) > 0 else "No source available"
|
228 |
+
response_source2 = response_sources[1].page_content.strip() if len(response_sources) > 1 else "No source available"
|
229 |
+
response_source3 = response_sources[2].page_content.strip() if len(response_sources) > 2 else "No source available"
|
230 |
+
|
231 |
+
# Langchain sources are zero-based; adjust pages if sources are available
|
232 |
+
response_source1_page = response_sources[0].metadata["page"] + 1 if len(response_sources) > 0 else "N/A"
|
233 |
+
response_source2_page = response_sources[1].metadata["page"] + 1 if len(response_sources) > 1 else "N/A"
|
234 |
+
response_source3_page = response_sources[2].metadata["page"] + 1 if len(response_sources) > 2 else "N/A"
|
235 |
|
236 |
# Append user message and response to chat history
|
237 |
new_history = history + [(message, response_answer)]
|
|
|
|
|
238 |
|
239 |
+
return gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
240 |
+
|
241 |
|
242 |
def upload_file(file_obj):
|
243 |
list_file_path = []
|
|
|
248 |
# initialize_database(file_path, progress)
|
249 |
return list_file_path
|
250 |
|
251 |
+
|
252 |
def demo():
|
253 |
with gr.Blocks(theme="base") as demo:
|
254 |
vector_db = gr.State()
|
|
|
259 |
"""PDF-based chatbot (by Dr. Aloke Upadhaya)</center></h2>
|
260 |
<h3>Ask any questions about your PDF documents, along with follow-ups</h3>
|
261 |
""")
|
|
|
262 |
with gr.Tab("Step 1 - Document pre-processing"):
|
263 |
with gr.Row():
|
264 |
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
|
|
|
339 |
|
340 |
if __name__ == "__main__":
|
341 |
demo()
|
342 |
+
|