File size: 5,332 Bytes
cf45a37
 
 
aa4f694
69fbdcb
cf45a37
69fbdcb
 
8537019
e690364
 
cf45a37
 
 
3e68ccf
 
 
 
69fbdcb
17a0c62
 
69fbdcb
4bd6659
724babe
9c0dccd
44d6df8
 
aa4f694
e690364
 
 
 
 
 
 
 
 
 
 
 
9c0dccd
69fbdcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf45a37
9c0dccd
cf45a37
 
 
 
 
 
 
 
9c0dccd
 
cf45a37
 
 
17a0c62
 
 
 
 
 
 
 
9c0dccd
cf45a37
3e68ccf
 
69fbdcb
 
 
 
 
cf45a37
69fbdcb
 
 
 
cf45a37
 
 
 
69fbdcb
 
cf45a37
44d6df8
 
69fbdcb
 
 
 
 
 
 
 
 
 
 
 
 
 
cf45a37
 
 
 
44d6df8
cf45a37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44d6df8
 
 
 
 
 
 
 
 
 
 
 
 
69fbdcb
3e68ccf
 
8537019
69fbdcb
44d6df8
69fbdcb
 
 
3e68ccf
69fbdcb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
"""
Helper functions to access LLMs.
"""
import logging
import re
import sys
from typing import Tuple, Union

import requests
from requests.adapters import HTTPAdapter
from urllib3.util import Retry
from langchain_core.language_models import BaseLLM

sys.path.append('..')

from global_config import GlobalConfig


LLM_PROVIDER_MODEL_REGEX = re.compile(r'\[(.*?)\](.*)')
# 6-64 characters long, only containing alphanumeric characters, hyphens, and underscores
API_KEY_REGEX = re.compile(r'^[a-zA-Z0-9\-_]{6,64}$')
HF_API_HEADERS = {'Authorization': f'Bearer {GlobalConfig.HUGGINGFACEHUB_API_TOKEN}'}
REQUEST_TIMEOUT = 35

logger = logging.getLogger(__name__)
logging.getLogger('httpx').setLevel(logging.WARNING)
logging.getLogger('httpcore').setLevel(logging.WARNING)

retries = Retry(
    total=5,
    backoff_factor=0.25,
    backoff_jitter=0.3,
    status_forcelist=[502, 503, 504],
    allowed_methods={'POST'},
)
adapter = HTTPAdapter(max_retries=retries)
http_session = requests.Session()
http_session.mount('https://', adapter)
http_session.mount('http://', adapter)


def get_provider_model(provider_model: str) -> Tuple[str, str]:
    """
    Parse and get LLM provider and model name from strings like `[provider]model/name-version`.

    :param provider_model: The provider, model name string from `GlobalConfig`.
    :return: The provider and the model name.
    """

    match = LLM_PROVIDER_MODEL_REGEX.match(provider_model)

    if match:
        inside_brackets = match.group(1)
        outside_brackets = match.group(2)
        return inside_brackets, outside_brackets

    return '', ''


def is_valid_llm_provider_model(provider: str, model: str, api_key: str) -> bool:
    """
    Verify whether LLM settings are proper.
    This function does not verify whether `api_key` is correct. It only confirms that the key has
    at least five characters. Key verification is done when the LLM is created.

    :param provider: Name of the LLM provider.
    :param model: Name of the model.
    :param api_key: The API key or access token.
    :return: `True` if the settings "look" OK; `False` otherwise.
    """

    if not provider or not model or provider not in GlobalConfig.VALID_PROVIDERS:
        return False

    if provider in [
        GlobalConfig.PROVIDER_GOOGLE_GEMINI,
        GlobalConfig.PROVIDER_COHERE,
    ] and not api_key:
        return False

    if api_key:
        return API_KEY_REGEX.match(api_key) is not None

    return True


def get_langchain_llm(
        provider: str,
        model: str,
        max_new_tokens: int,
        api_key: str = ''
) -> Union[BaseLLM, None]:
    """
    Get an LLM based on the provider and model specified.

    :param provider: The LLM provider. Valid values are `hf` for Hugging Face.
    :param model: The name of the LLM.
    :param max_new_tokens: The maximum number of tokens to generate.
    :param api_key: API key or access token to use.
    :return: An instance of the LLM or `None` in case of any error.
    """

    if provider == GlobalConfig.PROVIDER_HUGGING_FACE:
        from langchain_community.llms.huggingface_endpoint import HuggingFaceEndpoint

        logger.debug('Getting LLM via HF endpoint: %s', model)
        return HuggingFaceEndpoint(
            repo_id=model,
            max_new_tokens=max_new_tokens,
            top_k=40,
            top_p=0.95,
            temperature=GlobalConfig.LLM_MODEL_TEMPERATURE,
            repetition_penalty=1.03,
            streaming=True,
            huggingfacehub_api_token=api_key or GlobalConfig.HUGGINGFACEHUB_API_TOKEN,
            return_full_text=False,
            stop_sequences=['</s>'],
        )

    if provider == GlobalConfig.PROVIDER_GOOGLE_GEMINI:
        from google.generativeai.types.safety_types import HarmBlockThreshold, HarmCategory
        from langchain_google_genai import GoogleGenerativeAI

        logger.debug('Getting LLM via Google Gemini: %s', model)
        return GoogleGenerativeAI(
            model=model,
            temperature=GlobalConfig.LLM_MODEL_TEMPERATURE,
            max_tokens=max_new_tokens,
            timeout=None,
            max_retries=2,
            google_api_key=api_key,
            safety_settings={
                HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT:
                    HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
                HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
                HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
                HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT:
                    HarmBlockThreshold.BLOCK_LOW_AND_ABOVE
            }
        )

    if provider == GlobalConfig.PROVIDER_COHERE:
        from langchain_cohere.llms import Cohere

        logger.debug('Getting LLM via Cohere: %s', model)
        return Cohere(
            temperature=GlobalConfig.LLM_MODEL_TEMPERATURE,
            max_tokens=max_new_tokens,
            timeout_seconds=None,
            max_retries=2,
            cohere_api_key=api_key,
            streaming=True,
        )

    return None


if __name__ == '__main__':
    inputs = [
        '[co]Cohere',
        '[hf]mistralai/Mistral-7B-Instruct-v0.2',
        '[gg]gemini-1.5-flash-002'
    ]

    for text in inputs:
        print(get_provider_model(text))