File size: 13,672 Bytes
b5434b8
 
 
2605d55
aa4f694
2605d55
 
1d82a0b
c1acf68
1d82a0b
8953d62
1d82a0b
e9617d4
1d82a0b
b5434b8
2605d55
 
3e68ccf
 
57daf6a
3e68ccf
9fcc9ee
2605d55
 
 
 
 
 
3e68ccf
2605d55
 
aa4f694
 
f845b93
2605d55
f845b93
2605d55
f845b93
2605d55
 
f845b93
 
2605d55
 
 
 
 
 
 
 
f845b93
 
cf45a37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2605d55
f845b93
2605d55
 
 
 
b5434b8
f845b93
2605d55
f845b93
2605d55
 
813ce6e
 
69fbdcb
813ce6e
69fbdcb
813ce6e
 
 
 
69fbdcb
 
 
 
 
cf45a37
 
813ce6e
f845b93
69fbdcb
 
 
 
44d6df8
 
69fbdcb
 
 
 
f845b93
4d7e0d8
3e68ccf
4d7e0d8
3e68ccf
 
 
 
44d6df8
 
 
3e68ccf
2605d55
4d7e0d8
e55d16a
2605d55
3e68ccf
 
2605d55
3e68ccf
2605d55
3e68ccf
 
2605d55
294b6dd
3e68ccf
cf45a37
 
3e68ccf
2605d55
cf45a37
 
 
 
 
2605d55
 
 
 
cf45a37
2605d55
 
 
 
 
69fbdcb
 
cf45a37
69fbdcb
 
528a9bd
 
69fbdcb
528a9bd
2605d55
 
 
cf45a37
 
 
 
 
2605d55
 
cf45a37
e611c5a
2605d55
 
 
cf45a37
2605d55
b5434b8
 
2605d55
e9617d4
cf45a37
 
 
 
 
 
 
 
 
 
 
 
 
7bd7f55
cf45a37
 
 
 
 
 
e9617d4
cf45a37
 
 
 
 
 
e9617d4
 
 
cf45a37
e9617d4
 
cf45a37
 
815286a
e9617d4
8953d62
cf45a37
8953d62
cf45a37
 
8953d62
 
 
cf45a37
8953d62
 
44d6df8
 
 
cf45a37
8953d62
 
f809d41
b5434b8
 
f809d41
b5434b8
 
 
cf45a37
b5434b8
cf45a37
b5434b8
f809d41
b5434b8
e611c5a
 
 
 
b5434b8
 
c1acf68
cf45a37
c1acf68
b5434b8
 
 
 
 
abd7b16
2605d55
c1acf68
2605d55
b5434b8
 
3e68ccf
2605d55
c1acf68
2605d55
3e68ccf
c1acf68
 
 
cf45a37
 
 
c1acf68
 
 
 
cf45a37
c1acf68
 
cf45a37
 
c1acf68
 
e9617d4
cf45a37
 
e9617d4
cf45a37
 
e9617d4
 
 
cf45a37
e9617d4
 
cf45a37
 
e9617d4
 
c1acf68
2605d55
 
3e68ccf
2605d55
 
 
3e68ccf
1189403
 
 
2605d55
c1acf68
2605d55
c1acf68
e065b20
 
abd7b16
2605d55
 
 
b5434b8
 
3e68ccf
2605d55
 
 
 
 
 
 
c0b5a2b
2605d55
 
3e68ccf
2605d55
 
 
 
3e68ccf
2605d55
3e68ccf
 
2605d55
e55d16a
2605d55
3e68ccf
2605d55
e55d16a
33d58d5
2605d55
 
 
e55d16a
94d93d2
2605d55
 
 
e55d16a
2605d55
 
 
 
33d58d5
c6643c7
2605d55
 
 
 
 
 
33d58d5
2605d55
 
c6643c7
2605d55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e68ccf
 
 
ae312d0
 
 
 
3e68ccf
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
"""
Streamlit app containing the UI and the application logic.
"""
import datetime
import logging
import pathlib
import random
import tempfile
from typing import List, Union

import huggingface_hub
import json5
import requests
import streamlit as st
from langchain_community.chat_message_histories import StreamlitChatMessageHistory
from langchain_core.messages import HumanMessage
from langchain_core.prompts import ChatPromptTemplate

from global_config import GlobalConfig
from helpers import llm_helper, pptx_helper, text_helper


@st.cache_data
def _load_strings() -> dict:
    """
    Load various strings to be displayed in the app.
    :return: The dictionary of strings.
    """

    with open(GlobalConfig.APP_STRINGS_FILE, 'r', encoding='utf-8') as in_file:
        return json5.loads(in_file.read())


@st.cache_data
def _get_prompt_template(is_refinement: bool) -> str:
    """
    Return a prompt template.

    :param is_refinement: Whether this is the initial or refinement prompt.
    :return: The prompt template as f-string.
    """

    if is_refinement:
        with open(GlobalConfig.REFINEMENT_PROMPT_TEMPLATE, 'r', encoding='utf-8') as in_file:
            template = in_file.read()
    else:
        with open(GlobalConfig.INITIAL_PROMPT_TEMPLATE, 'r', encoding='utf-8') as in_file:
            template = in_file.read()

    return template


def are_all_inputs_valid(
        user_prompt: str,
        selected_provider: str,
        selected_model: str,
        user_key: str,
) -> bool:
    """
    Validate user input and LLM selection.

    :param user_prompt: The prompt.
    :param selected_provider: The LLM provider.
    :param selected_model: Name of the model.
    :param user_key: User-provided API key.
    :return: `True` if all inputs "look" OK; `False` otherwise.
    """

    if not text_helper.is_valid_prompt(user_prompt):
        handle_error(
            'Not enough information provided!'
            ' Please be a little more descriptive and type a few words'
            ' with a few characters :)',
            False
        )
        return False

    if not selected_provider or not selected_model:
        handle_error('No valid LLM provider and/or model name found!', False)
        return False

    if not llm_helper.is_valid_llm_provider_model(selected_provider, selected_model, user_key):
        handle_error(
            'The LLM settings do not look correct. Make sure that an API key/access token'
            ' is provided if the selected LLM requires it.',
            False
        )
        return False

    return True


def handle_error(error_msg: str, should_log: bool):
    """
    Display an error message in the app.

    :param error_msg: The error message to be displayed.
    :param should_log: If `True`, log the message.
    """

    if should_log:
        logger.error(error_msg)

    st.error(error_msg)


APP_TEXT = _load_strings()

# Session variables
CHAT_MESSAGES = 'chat_messages'
DOWNLOAD_FILE_KEY = 'download_file_name'
IS_IT_REFINEMENT = 'is_it_refinement'


logger = logging.getLogger(__name__)

texts = list(GlobalConfig.PPTX_TEMPLATE_FILES.keys())
captions = [GlobalConfig.PPTX_TEMPLATE_FILES[x]['caption'] for x in texts]

with st.sidebar:
    # The PPT templates
    pptx_template = st.sidebar.radio(
        '1: Select a presentation template:',
        texts,
        captions=captions,
        horizontal=True
    )

    # The LLMs
    llm_provider_to_use = st.sidebar.selectbox(
        label='2: Select an LLM to use:',
        options=[f'{k} ({v["description"]})' for k, v in GlobalConfig.VALID_MODELS.items()],
        index=GlobalConfig.DEFAULT_MODEL_INDEX,
        help=GlobalConfig.LLM_PROVIDER_HELP,
    ).split(' ')[0]

    # The API key/access token
    api_key_token = st.text_input(
        label=(
            '3: Paste your API key/access token:\n\n'
            '*Mandatory* for Cohere and Gemini LLMs.'
            ' *Optional* for HF Mistral LLMs but still encouraged.\n\n'
        ),
        type='password',
    )


def build_ui():
    """
    Display the input elements for content generation.
    """

    st.title(APP_TEXT['app_name'])
    st.subheader(APP_TEXT['caption'])
    st.markdown(
        '![Visitors](https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2Fbarunsaha%2Fslide-deck-ai&countColor=%23263759)'  # noqa: E501
    )

    with st.expander('Usage Policies and Limitations'):
        st.text(APP_TEXT['tos'] + '\n\n' + APP_TEXT['tos2'])

    set_up_chat_ui()


def set_up_chat_ui():
    """
    Prepare the chat interface and related functionality.
    """

    with st.expander('Usage Instructions'):
        st.markdown(GlobalConfig.CHAT_USAGE_INSTRUCTIONS)

    st.info(APP_TEXT['like_feedback'])
    st.chat_message('ai').write(random.choice(APP_TEXT['ai_greetings']))

    history = StreamlitChatMessageHistory(key=CHAT_MESSAGES)
    prompt_template = ChatPromptTemplate.from_template(
        _get_prompt_template(
            is_refinement=_is_it_refinement()
        )
    )

    # Since Streamlit app reloads at every interaction, display the chat history
    # from the save session state
    for msg in history.messages:
        st.chat_message(msg.type).code(msg.content, language='json')

    if prompt := st.chat_input(
        placeholder=APP_TEXT['chat_placeholder'],
        max_chars=GlobalConfig.LLM_MODEL_MAX_INPUT_LENGTH
    ):
        provider, llm_name = llm_helper.get_provider_model(llm_provider_to_use)

        if not are_all_inputs_valid(prompt, provider, llm_name, api_key_token):
            return

        logger.info(
            'User input: %s | #characters: %d | LLM: %s',
            prompt, len(prompt), llm_name
        )
        st.chat_message('user').write(prompt)

        if _is_it_refinement():
            user_messages = _get_user_messages()
            user_messages.append(prompt)
            list_of_msgs = [
                f'{idx + 1}. {msg}' for idx, msg in enumerate(user_messages)
            ]
            formatted_template = prompt_template.format(
                **{
                    'instructions': '\n'.join(list_of_msgs),
                    'previous_content': _get_last_response(),
                }
            )
        else:
            formatted_template = prompt_template.format(**{'question': prompt})

        progress_bar = st.progress(0, 'Preparing to call LLM...')
        response = ''

        try:
            llm = llm_helper.get_langchain_llm(
                provider=provider,
                model=llm_name,
                max_new_tokens=GlobalConfig.VALID_MODELS[llm_provider_to_use]['max_new_tokens'],
                api_key=api_key_token.strip(),
            )

            if not llm:
                handle_error(
                    'Failed to create an LLM instance! Make sure that you have selected the'
                    ' correct model from the dropdown list and have provided correct API key'
                    ' or access token.',
                    False
                )
                return

            for _ in llm.stream(formatted_template):
                response += _

                # Update the progress bar with an approx progress percentage
                progress_bar.progress(
                    min(
                        len(response) / GlobalConfig.VALID_MODELS[
                            llm_provider_to_use
                        ]['max_new_tokens'],
                        0.95
                    ),
                    text='Streaming content...this might take a while...'
                )
        except requests.exceptions.ConnectionError:
            handle_error(
                'A connection error occurred while streaming content from the LLM endpoint.'
                ' Unfortunately, the slide deck cannot be generated. Please try again later.'
                ' Alternatively, try selecting a different LLM from the dropdown list.',
                True
            )
            return
        except huggingface_hub.errors.ValidationError as ve:
            handle_error(
                f'An error occurred while trying to generate the content: {ve}'
                '\nPlease try again with a significantly shorter input text.',
                True
            )
            return
        except Exception as ex:
            handle_error(
                f'An unexpected error occurred while generating the content: {ex}'
                '\nPlease try again later, possibly with different inputs.'
                ' Alternatively, try selecting a different LLM from the dropdown list.'
                ' If you are using Cohere or Gemini models, make sure that you have provided'
                ' a correct API key.',
                True
            )
            return

        history.add_user_message(prompt)
        history.add_ai_message(response)

        # The content has been generated as JSON
        # There maybe trailing ``` at the end of the response -- remove them
        # To be careful: ``` may be part of the content as well when code is generated
        response = text_helper.get_clean_json(response)
        logger.info(
            'Cleaned JSON length: %d', len(response)
        )

        # Now create the PPT file
        progress_bar.progress(
            GlobalConfig.LLM_PROGRESS_MAX,
            text='Finding photos online and generating the slide deck...'
        )
        progress_bar.progress(1.0, text='Done!')
        st.chat_message('ai').code(response, language='json')

        if path := generate_slide_deck(response):
            _display_download_button(path)

        logger.info(
            '#messages in history / 2: %d',
            len(st.session_state[CHAT_MESSAGES]) / 2
        )


def generate_slide_deck(json_str: str) -> Union[pathlib.Path, None]:
    """
    Create a slide deck and return the file path. In case there is any error creating the slide
    deck, the path may be to an empty file.

    :param json_str: The content in *valid* JSON format.
    :return: The path to the .pptx file or `None` in case of error.
    """

    try:
        parsed_data = json5.loads(json_str)
    except ValueError:
        handle_error(
            'Encountered error while parsing JSON...will fix it and retry',
            True
        )
        try:
            parsed_data = json5.loads(text_helper.fix_malformed_json(json_str))
        except ValueError:
            handle_error(
                'Encountered an error again while fixing JSON...'
                'the slide deck cannot be created, unfortunately ☹'
                '\nPlease try again later.',
                True
            )
            return None
    except RecursionError:
        handle_error(
            'Encountered a recursion error while parsing JSON...'
            'the slide deck cannot be created, unfortunately ☹'
            '\nPlease try again later.',
            True
        )
        return None
    except Exception:
        handle_error(
            'Encountered an error while parsing JSON...'
            'the slide deck cannot be created, unfortunately ☹'
            '\nPlease try again later.',
            True
        )
        return None

    if DOWNLOAD_FILE_KEY in st.session_state:
        path = pathlib.Path(st.session_state[DOWNLOAD_FILE_KEY])
    else:
        temp = tempfile.NamedTemporaryFile(delete=False, suffix='.pptx')
        path = pathlib.Path(temp.name)
        st.session_state[DOWNLOAD_FILE_KEY] = str(path)

        if temp:
            temp.close()

    try:
        logger.debug('Creating PPTX file: %s...', st.session_state[DOWNLOAD_FILE_KEY])
        pptx_helper.generate_powerpoint_presentation(
            parsed_data,
            slides_template=pptx_template,
            output_file_path=path
        )
    except Exception as ex:
        st.error(APP_TEXT['content_generation_error'])
        logger.error('Caught a generic exception: %s', str(ex))

    return path


def _is_it_refinement() -> bool:
    """
    Whether it is the initial prompt or a refinement.

    :return: True if it is the initial prompt; False otherwise.
    """

    if IS_IT_REFINEMENT in st.session_state:
        return True

    if len(st.session_state[CHAT_MESSAGES]) >= 2:
        # Prepare for the next call
        st.session_state[IS_IT_REFINEMENT] = True
        return True

    return False


def _get_user_messages() -> List[str]:
    """
    Get a list of user messages submitted until now from the session state.

    :return: The list of user messages.
    """

    return [
        msg.content for msg in st.session_state[CHAT_MESSAGES] if isinstance(msg, HumanMessage)
    ]


def _get_last_response() -> str:
    """
    Get the last response generated by AI.

    :return: The response text.
    """

    return st.session_state[CHAT_MESSAGES][-1].content


def _display_messages_history(view_messages: st.expander):
    """
    Display the history of messages.

    :param view_messages: The list of AI and Human messages.
    """

    with view_messages:
        view_messages.json(st.session_state[CHAT_MESSAGES])


def _display_download_button(file_path: pathlib.Path):
    """
    Display a download button to download a slide deck.

    :param file_path: The path of the .pptx file.
    """

    with open(file_path, 'rb') as download_file:
        st.download_button(
            'Download PPTX file ⬇️',
            data=download_file,
            file_name='Presentation.pptx',
            key=datetime.datetime.now()
        )


def main():
    """
    Trigger application run.
    """

    build_ui()


if __name__ == '__main__':
    main()