File size: 3,406 Bytes
aa4f694
69fbdcb
 
 
8537019
e690364
 
 
9c0dccd
 
3e68ccf
 
 
 
69fbdcb
 
4bd6659
724babe
9c0dccd
aa4f694
e690364
 
 
 
 
 
 
 
 
 
 
 
9c0dccd
69fbdcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c0dccd
e690364
9c0dccd
813ce6e
 
69fbdcb
813ce6e
9c0dccd
 
813ce6e
9c0dccd
 
813ce6e
 
9c0dccd
 
 
 
 
69fbdcb
9c0dccd
 
 
3e68ccf
 
69fbdcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e68ccf
 
8537019
69fbdcb
 
 
 
3e68ccf
69fbdcb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import logging
import re
from typing import Tuple, Union

import requests
from requests.adapters import HTTPAdapter
from urllib3.util import Retry

from langchain_community.llms.huggingface_endpoint import HuggingFaceEndpoint
from langchain_core.language_models import LLM

from global_config import GlobalConfig


LLM_PROVIDER_MODEL_REGEX = re.compile(r'\[(.*?)\](.*)')
HF_API_HEADERS = {'Authorization': f'Bearer {GlobalConfig.HUGGINGFACEHUB_API_TOKEN}'}
REQUEST_TIMEOUT = 35

logger = logging.getLogger(__name__)

retries = Retry(
    total=5,
    backoff_factor=0.25,
    backoff_jitter=0.3,
    status_forcelist=[502, 503, 504],
    allowed_methods={'POST'},
)
adapter = HTTPAdapter(max_retries=retries)
http_session = requests.Session()
http_session.mount('https://', adapter)
http_session.mount('http://', adapter)


def get_provider_model(provider_model: str) -> Tuple[str, str]:
    """
    Parse and get LLM provider and model name from strings like `[provider]model/name-version`.

    :param provider_model: The provider, model name string from `GlobalConfig`.
    :return: The provider and the model name.
    """

    match = LLM_PROVIDER_MODEL_REGEX.match(provider_model)

    if match:
        inside_brackets = match.group(1)
        outside_brackets = match.group(2)
        return inside_brackets, outside_brackets

    return '', ''


def get_hf_endpoint(repo_id: str, max_new_tokens: int, api_key: str = '') -> LLM:
    """
    Get an LLM via the HuggingFaceEndpoint of LangChain.

    :param repo_id: The model name.
    :param max_new_tokens: The max new tokens to generate.
    :param api_key: [Optional] Hugging Face access token.
    :return: The HF LLM inference endpoint.
    """

    logger.debug('Getting LLM via HF endpoint: %s', repo_id)

    return HuggingFaceEndpoint(
        repo_id=repo_id,
        max_new_tokens=max_new_tokens,
        top_k=40,
        top_p=0.95,
        temperature=GlobalConfig.LLM_MODEL_TEMPERATURE,
        repetition_penalty=1.03,
        streaming=True,
        huggingfacehub_api_token=api_key or GlobalConfig.HUGGINGFACEHUB_API_TOKEN,
        return_full_text=False,
        stop_sequences=['</s>'],
    )


def get_langchain_llm(
        provider: str,
        model: str,
        max_new_tokens: int,
        api_key: str = ''
) -> Union[LLM, None]:
    """
    Get an LLM based on the provider and model specified.

    :param provider: The LLM provider. Valid values are `hf` for Hugging Face.
    :param model:
    :param max_new_tokens:
    :param api_key:
    :return:
    """
    if not provider or not model or provider not in GlobalConfig.VALID_PROVIDERS:
        return None

    if provider == 'hf':
        logger.debug('Getting LLM via HF endpoint: %s', model)

        return HuggingFaceEndpoint(
            repo_id=model,
            max_new_tokens=max_new_tokens,
            top_k=40,
            top_p=0.95,
            temperature=GlobalConfig.LLM_MODEL_TEMPERATURE,
            repetition_penalty=1.03,
            streaming=True,
            huggingfacehub_api_token=api_key or GlobalConfig.HUGGINGFACEHUB_API_TOKEN,
            return_full_text=False,
            stop_sequences=['</s>'],
        )

    return None


if __name__ == '__main__':
    inputs = [
        '[hf]mistralai/Mistral-7B-Instruct-v0.2',
        '[gg]gemini-1.5-flash-002'
    ]

    for text in inputs:
        print(get_provider_model(text))