Spaces:
baselqt
/
No application file

simswap55 / src /Generator /fs_networks_fix.py
LB5's picture
Upload 45 files
22b8701
"""
Copyright (C) 2019 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""
import torch
import torch.nn as nn
from torchvision import transforms
from typing import Iterable
import numpy as np
class InstanceNorm(nn.Module):
def __init__(self, epsilon=1e-8):
"""
@notice: avoid in-place ops.
https://discuss.pytorch.org/t/encounter-the-runtimeerror-one-of-the-variables-needed-for-gradient-computation-has-been-modified-by-an-inplace-operation/836/3
"""
super(InstanceNorm, self).__init__()
self.epsilon = epsilon
def forward(self, x):
x = x - torch.mean(x, (2, 3), True)
tmp = torch.mul(x, x) # or x ** 2
tmp = torch.rsqrt(torch.mean(tmp, (2, 3), True) + self.epsilon)
return x * tmp
class ApplyStyle(nn.Module):
"""
@ref: https://github.com/lernapparat/lernapparat/blob/master/style_gan/pytorch_style_gan.ipynb
"""
def __init__(self, latent_size, channels):
super(ApplyStyle, self).__init__()
self.linear = nn.Linear(latent_size, channels * 2)
def forward(self, x, latent):
style = self.linear(latent) # style => [batch_size, n_channels*2]
shape = [-1, 2, x.size(1), 1, 1]
style = style.view(shape) # [batch_size, 2, n_channels, ...]
# x = x * (style[:, 0] + 1.) + style[:, 1]
x = x * (style[:, 0] * 1 + 1.0) + style[:, 1] * 1
return x
class ResnetBlock_Adain(nn.Module):
def __init__(self, dim, latent_size, padding_type, activation=nn.ReLU(True)):
super(ResnetBlock_Adain, self).__init__()
p = 0
conv1 = []
if padding_type == "reflect":
conv1 += [nn.ReflectionPad2d(1)]
elif padding_type == "replicate":
conv1 += [nn.ReplicationPad2d(1)]
elif padding_type == "zero":
p = 1
else:
raise NotImplementedError("padding [%s] is not implemented" % padding_type)
conv1 += [nn.Conv2d(dim, dim, kernel_size=3, padding=p), InstanceNorm()]
self.conv1 = nn.Sequential(*conv1)
self.style1 = ApplyStyle(latent_size, dim)
self.act1 = activation
p = 0
conv2 = []
if padding_type == "reflect":
conv2 += [nn.ReflectionPad2d(1)]
elif padding_type == "replicate":
conv2 += [nn.ReplicationPad2d(1)]
elif padding_type == "zero":
p = 1
else:
raise NotImplementedError("padding [%s] is not implemented" % padding_type)
conv2 += [nn.Conv2d(dim, dim, kernel_size=3, padding=p), InstanceNorm()]
self.conv2 = nn.Sequential(*conv2)
self.style2 = ApplyStyle(latent_size, dim)
def forward(self, x, dlatents_in_slice):
y = self.conv1(x)
y = self.style1(y, dlatents_in_slice)
y = self.act1(y)
y = self.conv2(y)
y = self.style2(y, dlatents_in_slice)
out = x + y
return out
class Generator_Adain_Upsample(nn.Module):
def __init__(
self,
input_nc: int,
output_nc: int,
latent_size: int,
n_blocks: int = 6,
deep: bool = False,
use_last_act: bool = True,
norm_layer: torch.nn.Module = nn.BatchNorm2d,
padding_type: str = "reflect",
):
assert n_blocks >= 0
super(Generator_Adain_Upsample, self).__init__()
activation = nn.ReLU(True)
self.deep = deep
self.use_last_act = use_last_act
self.to_tensor_normalize = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
self.to_tensor = transforms.Compose([transforms.ToTensor()])
self.imagenet_mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1)
self.imagenet_std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1)
self.first_layer = nn.Sequential(
nn.ReflectionPad2d(3),
nn.Conv2d(input_nc, 64, kernel_size=7, padding=0),
norm_layer(64),
activation,
)
# downsample
self.down1 = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1),
norm_layer(128),
activation,
)
self.down2 = nn.Sequential(
nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1),
norm_layer(256),
activation,
)
self.down3 = nn.Sequential(
nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1),
norm_layer(512),
activation,
)
if self.deep:
self.down4 = nn.Sequential(
nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1),
norm_layer(512),
activation,
)
# resnet blocks
BN = []
for i in range(n_blocks):
BN += [
ResnetBlock_Adain(
512,
latent_size=latent_size,
padding_type=padding_type,
activation=activation,
)
]
self.BottleNeck = nn.Sequential(*BN)
if self.deep:
self.up4 = nn.Sequential(
nn.Upsample(scale_factor=2, mode="bilinear", align_corners=False),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(512),
activation,
)
self.up3 = nn.Sequential(
nn.Upsample(scale_factor=2, mode="bilinear", align_corners=False),
nn.Conv2d(512, 256, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(256),
activation,
)
self.up2 = nn.Sequential(
nn.Upsample(scale_factor=2, mode="bilinear", align_corners=False),
nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(128),
activation,
)
self.up1 = nn.Sequential(
nn.Upsample(scale_factor=2, mode="bilinear", align_corners=False),
nn.Conv2d(128, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
activation,
)
if self.use_last_act:
self.last_layer = nn.Sequential(
nn.ReflectionPad2d(3),
nn.Conv2d(64, output_nc, kernel_size=7, padding=0),
torch.nn.Tanh(),
)
else:
self.last_layer = nn.Sequential(
nn.ReflectionPad2d(3),
nn.Conv2d(64, output_nc, kernel_size=7, padding=0),
)
def to(self, device):
super().to(device)
self.device = device
self.imagenet_mean = self.imagenet_mean.to(device)
self.imagenet_std = self.imagenet_std.to(device)
return self
def forward(self, x: Iterable[np.ndarray], dlatents: torch.Tensor):
if self.use_last_act:
x = [self.to_tensor(_) for _ in x]
else:
x = [self.to_tensor_normalize(_) for _ in x]
x = torch.stack(x, dim=0)
x = x.to(self.device)
skip1 = self.first_layer(x)
skip2 = self.down1(skip1)
skip3 = self.down2(skip2)
if self.deep:
skip4 = self.down3(skip3)
x = self.down4(skip4)
else:
x = self.down3(skip3)
for i in range(len(self.BottleNeck)):
x = self.BottleNeck[i](x, dlatents)
if self.deep:
x = self.up4(x)
x = self.up3(x)
x = self.up2(x)
x = self.up1(x)
x = self.last_layer(x)
if self.use_last_act:
x = (x + 1) / 2
else:
x = x * self.imagenet_std + self.imagenet_mean
return x